Chemical Reviews

Volume **76, Number** 3 June 1976

Chromium, Molybdenum, and Tungsten: Thermodynamic Properties, Chemical Equilibria, and Standard Potentials

INGEMAR DELLIEN.¹ F. M. HALL.² and LOREN G. HEPLER*

Department of Chemistry, University of Lethbridge, Lefhbridge, Alberta, Canada

Received January 27, 1975 (Revised Manuscript Received June 3, 1975)

Confenfs

1. lnfroducfion

In this review we are primarily concerned with the thermodynamic properties of compounds and aqueous ions of chromium, molybdenum, and tungsten. Thermodynamic data for all of these have long been known to be useful in electrochemistry, analytical chemistry, metallurgy, and many applications of chemical principles. Because many of these thermodynamic quantities are most useful when presented in the form of equilibrium constants or standard potentials, we have listed a large number of these quantities.

We have been critical in our tabulations of data and have recalculated many of the published results cited here. When data from several sources are not in good agreement, we have attempted to justify our choices. In general, we have been explicit about the sources of data and also our treatment of data so that interested readers can check the steps leading to our tabulated values of thermodynamic properties (also related equilibrium constants and standard potentials) and form their own opinions about reliability and accuracy.

In several cases we have combined experimental data from a cited source with an estimate of some thermodynamic

property. *Numerical values of estimates are given in paren*theses.We have used auxiliary thermodynamic data [such as ΔH_f° of CI⁻(aq)] from the National Bureau of Standards Technical Notes $270-3$,³ 270-4,⁴ and 270-6,⁵ which are the most comprehensive sources of such data available to us.

In spite of considerable discussion in recent years, general agreement is still lacking on "sign conventions" for potentials. Much of the confusion arises because "sign" can be either electrical or algebraic, as previously discussed.⁶ All potentials listed in this review are reduction potentials with algebraic signs and may also be taken to be electrode potentials with electrical signs relative to the potential of the standard hydrogen electrode.

The symbols E° and *K* are used for potentials and equilibrium constants that have been determined in very dilute solutions or in such ways that activity coefficients could be considered in treating the experimental data. Similarly, we use ΔG° , ΔH° , and ΔS° to indicate data that refer to the usual standard states. $3-5.7$ Other useful investigations have been carried out in solutions maintained at some constant ionic strength by means of some "inert" supporting electrolyte. In some cases it has been possible to make reasonable estimates of adjustments to the usual infinite dilution standard states. In other cases we adopt properties based on "uncorrected" data and call attention to the fact that the cited properties refer to solutions having some stated ionic strength.

Except where explicitly stated otherwise, all thermodynamic properties cited in this review refer to 298.15 K (25 $^{\circ}$ C).

11. Chromium

A. Descriptive Chemistry

In addition to the familiar $+2$, $+3$, and $+6$ oxidation states, compounds and ions containing chromium in the -2 , -1 , 0, 4-4, and **+5** oxidation states have been reported. In this section we present brief qualitative descriptions of some compounds and ions characteristic of the various oxidation states and then turn to detailed discussion of thermodynamic properties, equilibrium constants, and standard potentials in following sections.

The best known compound containing chromium in the zero oxidation state is the hexacarbonyl, $Cr(CO)₆$. Reaction of $Cr(CO)_6$ with alkaline solutions yields compounds containing chromium in the -1 and -2 oxidation states. Representative compounds of this sort are $Na₂[Cr(CO)₅]$ and Na₂- $[Cr_2(CO)_{10}]$. Although it is well established that these and similar compounds are easily oxidized, we have no relevant quantitative data to cite later in this review.

Reduction of $K_3Cr(CN)_{6}$ in liquid NH₃ yields $K_6Cr(CN)_{6}$, which may be described as containing chromium in the zero oxidation state.⁸

Nash, Campbell, and Block⁹ have studied the preparation of chromium by thermal decomposition of bis(benzene)chromium.

Electron spin resonance and optical measurements have shown¹⁰ that it is reasonable to describe $K_3[Cr(CN)_5NO] \cdot H_2O$ as containing "effective" Cr^+ and NO^+ ions. Petrakis¹¹ has made lattice energy calculations that lead to estimates of enthalpies of formation of the hypothetical Cr^+ halides. These calculated ΔH_i° values show that the hypothetical solid CrX compounds are quite unstable with respect to disproportionation.

Reasonably common compounds containing chromium in the +2 oxidation state are the halides, the sulfate, and the acetate. Such hydrated salts as CrCl₂.4H₂O, CrSO₄.7H₂O, and $[Cr(Ac)₂]_{2}$. $2H_{2}O$ have been obtained from aqueous solutions. Because of its low solubility in aqueous solution, dimeric chromous acetate is one of the most easily prepared compounds of Cr(ll). This interesting red compound has an unusually short Cr-Cr distance and is diamagnetic at room temperature, presumably because of considerable interaction between the metal ions. Deyrup¹² has described preparation of some air-stable Cr(II) compounds: Na₂CrF₄ and CrXOH-HBO₃ (X = Cl, Br, or l). Beauchamp and Sullivan¹³ have developed procedures for large-scale preparation of CrCI₂.

Under most conditions the **4-3** oxidation state is the most stable state for chromium. The oxide, halides, sulfate, and nitrate are all common compounds. Many octahedral complexes of Cr(lll) are known in solution and in the solid state. One indication of the number and variety of such complexes is afforded by the work of Kyuno, Kamada, and Tanaka, 14 who have applied a systematic synthetic procedure to preparation of a series of 25 ammine complexes of Cr(lll). Because of the slow substitution reactions of many complexes of Cr(lll), these species may persist for long times under conditions where they are thermodynamically unstable. In this review our attention is largely limited to "inorganic" complexes for which fairly complete thermodynamic data are available.

Swaddle et al. 15 have recently discussed the aqueous chemistry of Cr(III) above 100 \degree C, with particular emphasis on various spinels, which have also been prepared by direct reaction of Cr_2O_3 with various other oxides.

A few solid and gaseous compounds of Cr(lV) and Cr(V) have been prepared.¹⁶ Some of these are the following: Ba₂CrO₄, Cr₂O₅, CrO₂, CrF₄, and oxyfluorides of Cr(V). Solute species containing Cr(lV) and Cr(V) are unstable with respect to disproportionation or reaction with solvent under most conditions. Several aqueous species of Cr(lV) and Cr(V) have been postulated as intermediates in oxidation-reduction reactions, and it is possible to make reasonable estimates of standard potentials for half-reactions involving these species. Evidence for moderately stable Cr(V) species in sulfuric acid solutions¹⁷ and in strong base¹⁸ has been reported.

Peroxo complexes of Cr(lll, IV, V, and VI) have been reviewed by Connor and Ebsworth¹⁹ and more recently by Cotton and Wilkinson.20 We also call attention to a recent equilibrium investigation of peroxo species of Cr(V and VI) by Bartlett and Quane.²¹ Among the peroxo compounds and ions that have been identified or postulated are the following: K_3CrO_8 , CrO(O₂)₂ and related salts, CrO₅-A (A = ether, pyridine, etc.), $Cr_2(O_2)^{4+}$, and $Cr_3(O_2)_2^{5+}$.

Many solid compounds and aqueous ions containing Cr(VI) are known and have been investigated enough that we can later quote reliable data. Several of these compounds and ions are useful oxidizing agents in acidic solution. The most common $Cr(VI)$ compounds and aqueous ions are $CrO₃$, $K_2Cr_2O_7$, K_2CrO_4 , $Cr_2O_7^{2-}$ (aq), HCrO₄⁻(aq), and CrO₄²⁻(aq). There are several slightly soluble chromates that are of some importance, including Ag_2CrO_4 , PbCrO₄, BaCrO₄, etc.

B. Element and Oxides

The best general sources of thermodynamic data for chromium and its compounds are the National Bureau of Standards Technical Notes $270-4^4$ and $270-6$,⁵ to which we hereafter refer as NBS 270-4 and NBS 270-6.

We follow NBS 270-4 in taking $\Delta H_f^{\circ} = 0$, $\Delta G_f^{\circ} = 0$, and S° = 5.68 cal K⁻¹ mol⁻¹ for Cr(c) at 298 K. Kelley and King²² have reviewed earlier C_p measurements that lead to this $S^{\circ} = 5.68$ cal K⁻¹ mol⁻¹. Two more recent investiga $t_{\text{tions}}^{23,24}$ have led to $S^{\circ} = 5.64$ and 5.72 cal K⁻¹ mol⁻¹. We also note that Bonilla and Garland25 have made *C,* measurements on Cr(c) at various pressures near the Néel transition.

We accept $S^{\circ} = 41.68$ cal K^{-1} mol⁻¹ for Cr(g) as listed in NBS 270-4, based on statistical thermodynamic calculations. Stull and Sinke²⁶ and more recently Storms²⁷ have reviewed results of high-temperature vapor pressure studies and have calculated $\tilde{\Delta}H_1^{\circ}$ = 95.0 and 94.89 \pm 0.31 kcal mol⁻¹ for Cr(g). Dickson, Myers, and Saxer²⁸ have made measurements (not considered above^{26,27}) that lead to $\Delta H_f^{\circ} = 95.3$ kcal mol⁻¹ for Cr(g) at 298 K. On the basis of all these results, we adopt $\Delta H_f^{\circ} = 95.0$ kcal mol⁻¹ for Cr(g) and combine with the S° to obtain $\Delta G_f^{\circ} = 84.3$ kcal mol⁻¹.

For the Crⁿ⁺(g) ions we adopt the ΔH_f° values from NBS 270-4 after adjustment for the change in ΔH_f° for Cr(g) from the NBS 270-4 value (94.8 kcal mol⁻¹) to our value (95.0 kcal mol $^{-1}$).

For CrO(g) we adopt $\Delta H_f^{\circ} \simeq 53$ kcal mol⁻¹ from Grimley, Burns, and Inghram²⁹ and $S^{\circ} = 53.0$ cal K⁻¹ mol⁻¹ from Kelley and King.²² These values lead to $\Delta G_f^{\circ} = 46$ kcal mol^{-1} for CrO(g).

The NBS 270-4 lists ΔH_f° (at 0 K) = -14 kcal mol⁻¹ for $CrO₂(g)$. This value is consistent with the results of Grimley et $al.²⁹$ More recent investigations^{30,31} have led to less exothermic values. On the basis of all three investigations, $29-31$ we adopt $\Delta H_f^{\circ} \simeq -3$ kcal mol⁻¹ and combine with the S° = 62.0 cal K⁻¹ mol⁻¹ from Nagarajan³² to obtain ΔG_f° for this compound.

The NBS 270-4 lists $\Delta H_f^{\circ} = -143$ kcal mol⁻¹ for CrO₂(c). Although the only calorimetric investigation we know of for $CrO₂(c)$ (by Ariya et al.³³) has led to a less exothermic value, we tentatively accept the value from NBS 270-4 and combine with an estimated S° to obtain its ΔG_f° .

For Cr₂O₃(c) we have a well-established S° = 19.4 cal K^{-1} mol⁻¹, based on work reviewed by Kelley and King, 2^2 and as adopted in NBS 270-4. Unfortunately, the situation is not so clear for ΔH_f° and ΔG_f° for this important compound.

Combustion calorimetry by Mah^{34,35} gives $\Delta H_f^{\circ} = -272.6$ \pm 0.6 kcal mol⁻¹ for Cr₂O₃(c). High-temperature equilibrium measurements of the reduction of $Cr_2O_3(c)$ by $H_2(q)$ have led Novokhatskii and Lenev³⁶ to report ΔH_f° (at 298 K) = -272.8 ± 0.8 kcal mol⁻¹ for Cr₂O₃(c). Our own second law calculation with their results leads to a slightly more negative value, while our third law calculation with the same results leads to a slightly less negative value, with both calculations making use of high-temperature data from Kelley.³⁷ All of these values are in agreement with $\Delta H_i^{\circ} = -272.4$ kcal mol⁻¹ for $Cr_2O_3(c)$ as listed in NBS 270-4.

But there is also evidence in favor of a significantly less negative ΔH_f° for Cr₂O₃(c). For example, high-temperature equilibrium results have led Ramsey, Caplan, and Burr³⁸ to report $\Delta H_f^{\circ} = -268.5$ kcal mol⁻¹. High-temperature emf measurements by Tretjakow and Schmalzried³⁹ have led to results that permit us to calculate (second law) $\Delta H_f^{\circ} = -261$ kcal mol⁻¹ and (third law) $\Delta H_f^{\circ} = -268$ kcal mol⁻¹ for $Cr₂O₃(c)$. More recent high-temperature emf measurements by Mazandarany and Pehlke⁴⁰ and also high-temperature equilibrium measurements by Jeannin, Mannerskantz, and Richardson4' have yielded results that we have used for calculation of ΔH_f° (at 298 K) = -270.0 kcal mol⁻¹ for $Cr_2O_3(c)$, again making use of auxiliary data from Kelley.³⁷

It is obvious from the discussion in the two paragraphs above that there are substantial and unexplained discrepancies between the results of high-quality investigations. Kulkarni and Worrell⁴² have selected $\Delta H_i^{\circ} = -270.0$ kcal mol⁻¹ for Cr₂O₃(c), partly on the basis of the work of Richardson et al. 41 and partly to achieve consistency with some results for chromium carbides that we discuss later. But it should also be pointed out that consistency with some other results for chromium carbides is best achieved by way of $\Delta H_f^{\circ} = -272.6$ kcal mol⁻¹ for Cr₂O₃(c) as found by Mah^{34,35} or $\Delta H_{\text{e}}^{\text{o}} = -272.4$ kcal mol⁻¹ as listed in NBS 270-4.

In the absence of further definitive measurements involving $Cr_2O_3(c)$, we must make a somewhat arbitrary choice of a best ΔH_f° and then make as many other values as possible be consistent with this chosen value. Partly for convenience in relating our Tables to NBS **270-4** and **270-6** and partly because of our respect for the work of Mah34,35 and prejudice in favor of calorimetry, we adopt $\Delta H_1^{\circ} = -272.4$ kcal mol⁻¹ for Cr₂O₃(c) as listed in NBS 270-4. Therefore we also adopt $\Delta G_f^{\circ} = -252.9$ kcal mol⁻¹ as listed in NBS 270-4.

Combination of enthalpies of solution⁴³ of CrO₃(c) and $(NH_4)_2Cr_2O_7(c)$ with the enthalpy of decomposition⁴⁴ of $(NH_4)_2Cr_2O_7(c)$ and the ΔH_1° of Cr₂O₃(c) adopted above leads to ΔH_f° = -140.9 kcal mol⁻¹ for CrO₃(c), which is the value listed in NBS **270-4** and is also the value we adopt for this compound. We note, however, that there are other paths to this ΔH_f° . Bichowsky and Rossini⁴⁵ have quoted (from Roth and Becker) a ΔH for decomposition of CrO₃(c) to Cr₂O₃(c) and O₂(g) that leads us to $\Delta H_f^{\circ} = -139.7$ kcal mol⁻¹ for CrO₃(c), based on our adopted ΔH_f° for Cr₂O₃(c). More recent measurements by Richelmi and Laffitte⁴⁶ of the enthalpy of decomposition of CrO₃(c) lead to $\Delta H_f^{\circ} = -137.0$ kcal mol⁻¹ for CrO₃(c). Because of the disagreements between these values, it must be concluded that at least one of the three kinds of measurements [enthalpies of solution, enthalpy of decomposition of CrO₃, enthalpy of decomposition of $(NH_4)_2Cr_2O_7$ is in error. We combine an estimated S° with our adopted ΔH_f° to obtain the ΔG_f° of CrO₃(c).

For CrO₃(g) we adopt $\Delta H_f^{\circ} \simeq -65$ kcal mol⁻¹ from the results of Grimley et al.29 and the more recent results of Farber and Srivastava.³¹ We combine this value, which is considerably less negative than the value listed in NBS **270-4,** with S° = 63.6 cal K⁻¹ mol⁻¹ from Nagarajan³² to obtain $\Delta G_{\text{f}}^{\circ} \simeq -60$ kcal mol⁻¹ for this compound.

McDonald and Margrave⁴⁷ have investigated vaporization of CrO₃ to form various $(CrO₃)₀(g)$ species.

The investigation by Richelmi and Laffitte⁴⁶ of the decomposition of $CrO₃(c)$ to $Cr₂O₃(c)$ indicates that the reaction proceeds via Cr₅O₁₂(c) and Cr₈O₂₁(c). Their results lead to ΔH_f° values for these compounds, which we list as ΔH_f° = -140.3 kcal mol⁻¹ for CrO_{2.40}(c) and $\Delta H_f^{\circ} = -139.1$ kcal mol⁻¹ for CrO_{2.62}(c). Because the ΔH_f° of CrO₃(c) from these workers⁴⁶ differs from the value we have adopted, the ΔH_f° values quoted above for the intermediate oxides may not bear the right relationship to our ΔH_f° values for CrO₃(c) and $Cr_2O_3(c)$.

C. **Cr(VI): Compounds and Aqueous Ions**

Bomb calorimetric measurements by Neugebauer and

Margrave⁴⁴ have led to ΔH° of decomposition of $(NH_4)_2Cr_2O_7(c)$ to $Cr_2O_3(c)$. Combination of this result with our selected ΔH_f° of Cr₂O₃(c) leads to $\Delta H_f^{\circ} = -431.8$ kcal mol⁻¹ for (NH₄)₂Cr₂O₇(c), which is the same as the value listed in NBS **270-4** for this compound. As noted in the preceding section, we have used this result with enthalpies of solution⁴³ in establishing the ΔH_f° of CrO₃(c).

The most direct route to the ΔH_1° of CrO₄²⁻(aq) is by way of the calorimetrically measured⁴³ enthalpy of solution of $CrO₃(c)$ in excess OH⁻(aq). Combination of the resulting ΔH° of solution with our adopted ΔH_f° of CrO₃(c) leads to ΔH_f° = **-210.60** kcal mol-' for Cr042-(aq), which is the value we adopt and is also the value listed in NBS **270-4.**

The entropy of $CrO₄^{2–}(aq)$ can be obtained by way of $Ag_2CrO_4(c)$ as follows. Smith, Pitzer, and Latimer⁴⁸ have reported $S^{\circ} = 51.82$ cal K⁻¹ mol⁻¹ for Ag₂CrO₄(c), based on their C_p measurements. Subsequent recalculation²² has led to $S^{\circ} = 52.0$ cal K^{-1} mol⁻¹, which is the value listed in NBS 270-4 and adopted here. Smith, Pitzer, and Latimer⁴⁸ have also made calorimetric measurements leading to ΔH° = 14.45 kcal mol^{-1} for

$$
Ag_2CrO_4(c) = 2Ag^+(aq) + CrO_4^{2-}(aq)
$$
 (1)

Subsequent emf measurements and the derived d In $K_{\rm sn}/dT$ from Pan⁴⁹ lead to $\Delta H^{\circ} = 14.49$ kcal mol⁻¹ for this reaction, in good agreement with the calorimetric result.⁴⁸ Smith, Pitzer, and Latimer⁴⁸ chose $K_{sp} = 1.1 \times 10^{-12}$ from the work of Cann and Mueller.⁵⁰ We combine the ΔG° of solution from this $K_{\rm sp}$ with their⁴⁸ enthalpy of solution and entropies of Ag⁺(aq) and Ag₂CrO₄(c) to obtain S° = 11.1 cal K⁻¹ mol⁻¹ for CrO_4^2 ⁻(aq). There are, however, two other K_{sp} values worth consideration in connection with this calculation. Pan's measurements⁴⁹ led to $K_{\text{so}} = 1.3 \times 10^{-12}$ at 25 °C, while conductance measurements by Howard and Nancollas⁵¹ have led to $K_{sp} = 2.5 \times 10^{-12}$ for Ag₂CrO₄(c). Use of this latter K_{sp} in the calculation described above leads to S° = 12.6 cal K^{-1} mol⁻¹ for CrO₄²⁻(aq), while Pan's results lead to a value intermediate between 11.1 and 12.6 cal K^{-1} mol⁻¹ for this ion. It is also possible to calculate S° for CrO₄²⁻(aq) from the solubility, enthalpy of solution, activity coefficient in saturated solution, and the third law entropy of $K_2CrO_4(c)$, but the result is not accurate enough to help us choose between the entropies cited above. In the absence of another reliable path or new data for silver chromate, the best we can do is adopt S° = 12 cal K⁻¹ mol⁻¹ for CrO₄²⁻(aq). The NBS 270-4 lists S° = 12.00 cal K⁻¹ mol⁻¹ for this ion, but we are unable to justify the last two figures in this value.

Combination of our selected S° and ΔH_f° values leads to $\Delta G_f^{\circ} = -173.9_6$ kcal mol⁻¹ for CrO₄²⁻(aq), in agreement with the NBS **270-4.**

The properties of $HCrO₄⁻(aq)$ can now be derived from the thermodynamics of the reaction

$$
HCrO_4^-(aq) = H^+(aq) + CrO_4^{2-}(aq)
$$
 (2)

The equilibrium results of several sets of investigators $52-57$ are in agreement with $K = 3.3 \times 10^{-7}$ for this reaction at 298 K. We therefore adopt the corresponding ΔG_f° = -182.8 kcal mol⁻¹ for HCrO₄⁻(aq), which is also the value listed in NBS 270-4. We also adopt $\Delta H_f^{\circ} = -209.9$ kcal mol⁻¹ for this ion as derived from a calorimetric⁴³ ΔH° for reaction 2 and as listed in NBS 270-4. This ΔH_f° is in good agreement with the d In K/dT results of Linge and Jones.⁵² Combination of the ΔG_f° and ΔH_f° values above leads to S^o $= 44$ cal K⁻¹ mol⁻¹ for HCrO₄⁻(aq).

We also note that there have been several investigations⁵⁶⁻ *⁵⁸*of reaction **2** in **3** M C104- medium, with the best results probably being those of Arnek and Johansson.⁵⁸

For the reaction

$$
2HCrO_4^-(aq) = Cr_2O_7^{2-}(aq) + H_2O(liq)
$$
 (3)

we choose $K = 33.9$ from the results of several investigators⁵⁹⁻⁶¹ and the corresponding $\Delta G_f^{\circ} = -311.0$ kcal mol⁻¹ for Cr₂O₇²⁻(aq), with this same ΔG_f° being listed in NBS 270-4. This *K* is in only fair agreement with the results of other investigators.^{53,62} We also adopt $\Delta H_f^{\circ} = -356.2$ kcal mol⁻¹ for $Cr_2O_7^2$ ⁻(aq) from the results of calorimetric investigation⁴³ of reaction 3 and as listed in NBS 270-4. This ΔH_f° is in good agreement with the d In K/dT results of Linge and Jones⁵⁹ and Davies and Prue⁶⁰ but in poorer agreement with the results of other investigators.⁶² Combination of ΔG_f° and ΔH_f° values leads to S° = 62.6 cal K⁻¹ mol⁻¹ for- $Cr_2O_7^2$ ⁻(aq), as in NBS 270-4.

Several investigations^{56-58,61,63,64} have yielded results for reaction 3 in various constant ionic strength media.

Results of two investigations^{65,66} are in reasonable agreement with the following:

$$
H_2CrO_4(aq) = H^+(aq) + HCrO_4^-(aq) \qquad K(3 M) \simeq 5
$$

We use this *K* with the ΔG_f° of HCrO₄⁻(aq) to calculate ΔG_f° $= -181.8$ kcal mol⁻¹ for H₂CrO₄(aq). The d ln *K*/d*T* results of Tong and Johnson⁶⁵ permit calculation of $\Delta H_f^{\circ} = -201$ kcal mol⁻¹ and S° = 70 cal K⁻¹ mol⁻¹ for H₂CrO₄(aq). Their investigations 65 have also led to the following:

 $HCrO_4^- (aq) + H^+(aq) + Cl^-(aq) = CrO_3Cl^-(aq) + H_2O(liq)$

$$
K(1 \text{ M}) = 11
$$

This K is in agreement with results of an earlier investigation.⁶⁶ We use the above⁶⁵ K and also d In K/dT to calculate $\Delta G_f^{\circ} = -158_{.9}$ kcal mol⁻¹, $\Delta H_f^{\circ} = -180_{.4}$ kcal mol⁻¹, and S° = 49 cal K⁻¹ mol⁻¹ for CrO₃CI⁻(aq).

We also have the following equilibrium constants^{66,67} for other reactions of $HCrO₄⁻(aq):$

$$
HCrO4-(aq) + HSO4-(aq) = CrSO72-(aq) + H2O(liq)
$$

$$
K(3 \text{ M}) = 4
$$

 $HCrO_4^-(aq) + H_2PO_4^-(aq) = HCrPO_7^{2-}(aq) + H_2O(liq)$

$$
K(0.25 \text{ M})=3
$$

 $HCrO_4^-(aq) + H_3PO_4(aq) = H_2CrPO_7^-(aq) + H_2O(liq)$

$$
K(0.25\,\mathrm{M})=9
$$

We combine the second and third of these equilibrium constants with ΔG_f° values for H₂PO₄⁻(aq) and H₃PO₄(aq) from NBS 270-3 to obtain our tabulated ΔG_f° values for the Cr-P species. We do not do this same calculation for $CrSO_7^{2-}$ (aq) because of the high ionic strength of the medium to which the K applies.

We also have

$$
HCrO4-(aq) + Fe3+(aq) = FeCrO4+(aq) + H+(aq)
$$

$$
K(1 M) = 0.43
$$

from the work of Espenson and Helzer.⁶⁸

Two high-temperature investigations 31,69 are in good agreement with $\Delta H_f^{\circ} = -176$ kcal mol⁻¹ for H₂CrO₄(g), as compared with -174 kcal mol⁻¹ listed in NBS 270-4.

We now consider the properties of various chromates and dichromates, beginning with Ag₂CrO₄(c). As previously stated, we have^{22,48} S° = 52.0 cal K⁻¹ mol⁻¹ from C_{p} measurements and the third law. We combined the calorimetric enthalpy of solution from Smith, Pitzer, and Latimer⁴⁸ with ΔH_f° Values for Ag⁺(aq) and CrO₄²⁻(aq) to obtain ΔH_f° = -174.58 kcal mol⁻¹ for Ag₂CrO₄(c). Further combination of ΔH_f° and *S*^o leads to $\Delta G_f^{\circ} = -153.11$ kcal mol⁻¹ for this compound and thence to a calculated $K_{sp} = 1.8 \times 10^{-12}$ for $Ag_2CrO_4(c)$.

Ferrante, Stuve, and Krug7' have made *C,* measurements leading to S° = 42.212 cal K⁻¹ mol⁻¹ for Na₂CrO₄(c) at 298 K. They⁷⁰ have also made high-temperature measurements leading to values of $(H_T - H_{298})$ and related thermodynamic quantities. The enthalpy of solution⁷¹ leads to ΔH_i° = -320.8 kcal mol⁻¹, which we combine with the entropy to obtain $\Delta G_f^{\circ} = -295.2$ kcal mol⁻¹ for Na₂CrO₄(c).

The enthalpy of reaction⁷¹ of $Na_2Cr_2O_7(c)$ with excess OH⁻(aq) leads to its $\Delta H_f^{\circ} = -473.0$ kcal mol⁻¹, which we combine with our estimated $S^{\circ} = (64)$ cal K⁻¹ mol⁻¹ to obtain $\Delta G_f^{\circ} = -430.3 \text{ kcal mol}^{-1}$ for $\text{Na}_2\text{Cr}_2\text{O}_7(c)$.

We use the calorimetric enthalpy 43 of solution of K₂CrO₄(c) to obtain its $\Delta H_f^{\circ} = -335.4$ kcal mol⁻¹ and combine with the entropy²² (S° = 47.8 cal K⁻¹ mol⁻¹) to obtain $\Delta G_f^{\circ} = -309.6$ kcal mol⁻¹ for K₂CrO₄(c).

Measurements by Farber and Srivastava³¹ lead to ΔH_f° = -249 kcal mol⁻¹ for K₂CrO₄(g) and to $\Delta H_1^{\circ} = -217$ kcal mol⁻¹ for KHCrO₄(g).

The enthalpy of reaction⁷¹ of $K_2Cr_2O_7(c)$ with excess OH⁻(aq) leads to its $\Delta H_f^{\circ} = -492.9$ kcal mol⁻¹. We combine this quantity with the $S^{\circ} = 69.6$ cal K⁻¹ mol⁻¹ from Kelley and King²² to obtain $\Delta G_f^{\circ} = -450.0$ kcal mol⁻¹ for $K_2Cr_2O_7(c)$. We also note that Shmagin and Shidlovskii⁷² have measured enthalpies of dilution of supersaturated solutions of $K_2Cr_2O_7(aq)$.

For $(NH_4)_2$ CrO₄(c) we adopt $\Delta H_1^{\circ} = -279.0$ kcal mol⁻¹ as listed in NBS 270-4, consistent with an old enthalpy of solution. 45

We also adopt $\Delta H_f^{\circ} = -321.1$ kcal mol⁻¹ for MgCrO₄(c) as listed in NBS 270-6, based on results of older investigations that are cited in NBS Circular 500.73

Shidlovskii, Voskresenskii, and Balakireva⁷⁴ have measured the enthalpy of solution of SrCrO₄(c) in acid with results that lead us to $\Delta H_f^{\circ} = -341.6$ kcal mol⁻¹ for this compound. Sillen⁷⁵ has listed $K_{sp} = 2 \times 10^{-5}$ for SrCrO₄(c), which leads us to its $\Delta G_f^{\circ} = -314.0$ kcal mol⁻¹. Combination of this ΔG_f° with the ΔH_i° gives $S^{\circ} = 23.6$ cal K⁻¹ mol⁻¹ for SrCrO₄(c). This calculated entropy is smaller than seems reasonable. Combination of the ΔH_f° above with a "more reasonable" larger entropy leads to a calculated K_{sp} that is smaller than the listed 75 value. Further measurements are needed.

Shidlovskii et al.⁷⁴ have also measured the enthalpy of precipitation of BaCrO₄(c), which leads us to $\Delta H_f^{\circ} = -345.3$ kcal mol⁻¹ for this compound. Taking $K_{\rm sp} = 1.2 \times 10^{-10}$ from Beyer and Rieman, ⁷⁶ we calculate $\Delta G_f^{\circ} = -321.53$ kcal mol⁻¹ for BaCrO₄(c), which is the value listed in NBS 270-6. Combination of ΔH_f° and ΔG_f° values leads to S° = 38.9 cal K⁻¹ mol⁻¹ for BaCrO₄(c). Our values for the ΔH_i° and S° of BaCrO₄(c) differ slightly from those listed in NBS 270-6, possibly because we have used an enthalpy of precipitation that appeared too late for consideration there. A third law entropy would be a useful check on the other results.

Old (somewhat uncertain) calorimetric results⁴⁵ lead us to ΔH° = -11 kcal mol⁻¹ for the enthalpy of precipitation of PbCrO₄(c) and thence to $\Delta H_f^{\circ} = -222$ kcal mol⁻¹ for this compound. Taking $K_{\text{sp}} = 2.5 \times 10^{-13}$ from Kolthoff, Perlich, and Weiblen,⁷⁷ we calculate $\Delta G_f^{\circ} = -197.0$ kcal mol⁻¹ for PbCrO₄(c) and combine this value with the ΔH_f° above to obtain $S^{\circ} = 35$ cal K^{-1} mol⁻¹ for this compound. On the basis of apparently reliably known entropies for other compounds of lead and barium, it seems safe to predict that the entropy (at 298 K) of $PbCrO₄(c)$ should be larger than that of Ba- $CrO₄(c)$. Because the S^o we have calculated here for PbCr04(c) is *smaller* than that calculated in the preceding paragraph for $BaCrO₄(c)$, we suggest that there is at least one error in the various properties listed above for these compounds. Further measurements are needed.

Sillén⁷⁵ has listed $K_{sp} = 9.77 \times 10^{-13}$ for Tl₂CrO₄(c), with

reference to Suzuki.⁷⁸ We use this K_{sp} to calculate ΔG_f° = -205.82 kcal mol⁻¹ for Tl₂CrO₄(c), in close agreement with the value listed in NBS 270-4. The abstract⁷⁸ of Suzuki's paper quotes $\Delta H^{\circ} = -50.74$ kcal mol⁻¹ [Neither ΔG° nor ΔS° is given in the abstract.] for the reaction

$$
Ag_2CrO_4(c) + 2Ti(c) = Ti_2CrO_4(c) + 2Ag(c)
$$

from which we calculate $\Delta H_f^{\circ} = -225.3$ kcal mol⁻¹ for $T1₂CrO₄(c)$. About half of the difference between this value and the value $(-225.8 \text{ kcal mol}^{-1})$ listed in NBS 270-4 is due to the difference between our ΔH_f° for Ag₂CrO₄(c) and that listed in NBS 270-4. Combination of our ΔH_f° and ΔG_f° values leads to a calculated $S^{\circ} = 69.2$ cal K⁻¹ mol⁻¹ for Tl₂CrO₄(c), as compared to $S^{\circ} = 67.5$ cal K⁻¹ mol⁻¹ listed in NBS 270-4. Because entropies of various other compounds of silver and thallium lead us to estimate $S^{\circ} = (61)$ cal K^{-1} mol⁻¹ for $Ti_2CrO_4(c)$, we suspect some error in the reported⁷⁸ data. We adopt ΔH_f° and S° values that are averages of the values we have quoted above and the values listed in NBS 270.4.

Gaultier and Pannetier⁷⁹ have investigated the thermodynamics of solid-state transitions and melting of $Ti₂CrO₄$, while Natarajan and Secco⁷⁹ have investigated enthalpies of phase transitions of $Tl_2CrO_4(c)$ and $Ag_2CrO_4(c)$.

For the very reactive chromyl fluoride ($CrO₂F₂$) we have only vapor pressure data⁸⁰ from which we calculate ΔS° = 18 cal K⁻¹ mol⁻¹ for melting and $\Delta S^{\circ} = 27$ cal K⁻¹ mol⁻¹ for vaporization at the normal boiling point. Edwards, Falconer, and Sunder⁸¹ have reported a new synthesis of CrOF₄. Their vapor pressure measurements show that there is a solid-state transition at 24.1 °C (ΔH° = 3.7 kcal mol⁻¹ and ΔS° = 12 cal K⁻¹ mol⁻¹) and have also led to ΔS° = 8 cal K⁻¹ mol⁻¹ for melting (55 °C) and to ΔS° = 27 cal K⁻¹ mol⁻¹ for vaporization at the normal boiling point (95 $^{\circ}$ C). It is interesting to note that the sum of the entropies of transition and melting for $CrOF₄$ is close to the entropy of melting of $CrO₂F₂$ and that entropies of vaporization of both compounds suggest that both liquids are associated.

The properties listed in NBS 270-4 for $CrO₂Cl₂(liq$ and g) are consistent with enthalpies of reaction, $7^{3,82,\overline{8}3}$ vapor pressures,^{73,82} and an entropy of $CrO₂Cl₂(g)$ calculated from estimated molecular constants.

D. Cr(ll) and Cr(ll1): Compounds and Aqueous Ions

The NBS 270-4 lists S° = 22.44 cal K⁻¹ mol⁻¹ for $CrF₃(c)$, which is the value obtained by Hansen and Griffel⁸⁴ from their C_p measurements. Old results cited by Bichowsky and Rossini,⁴⁵ NBS Circular 500,⁷³ Brewer et al.,⁸⁵ and more recent high-temperature emf results from Tanaka, Yamaguchi, and Moriyama⁸⁶ lead to various values of the thermodynamic properties of $CrF_2(c)$ and $CrF_3(c)$. Weighting the recent results⁸⁶ most heavily leads us to values for the thermodynamic properties of these compounds that are consistent with those listed in NBS 270-4, which we adopt here. Hightemperature measurements by Kent and Margrave⁸⁷ lead to ΔH_f° = -99 kcal mol⁻¹ for CrF₂(g), as also listed in NBS 270-4, and to $\Delta H_f^{\circ} = 5$ kcal mol⁻¹ for CrF(g). The enthalpy of sublimation of $CrF_3(c)$ from Zmbov and Margrave⁸⁸ leads to ΔH_f° = -217 kcal mol⁻¹ for CrF₃(g).

For CrCl₂(c) we adopt $S^{\circ} = 27.56$ cal K⁻¹ mol⁻¹ from the C_p measurements of Stout and Chisholm,⁸⁹ whose review of earlier high-temperature equilibrium investigations has led to ΔH_f° = -94.52 kcal mol⁻¹ and ΔG_f° = -85.1 kcal mol⁻¹ for this compound. All of these values are the same as those listed in NBS 270-4. It might be noted that these values are not consistent with the recent high-temperature equilibrium results of Papapietro and Monnier.⁹⁰

The $\Delta H_f^{\circ} = -30.7$ kcal mol⁻¹ for CrCl₂(g) that is listed in NBS 270-4 is consistent with the work of Maier.⁹¹ who has also calculated $S^{\circ} = 74.2$ cal K⁻¹ mol⁻¹ for this compound. A more recent calculation⁹² leads to S° = 74.8 cal K⁻¹ mol⁻¹, which we adopt and use with the ΔH_f° above to obtain $\Delta G_f^{\circ} = -35.4$ kcal mol⁻¹ for CrCl₂(g).

The NBS 270-4 lists ΔH_f° = -111 kcal mol⁻¹ for $(CrCl₂)₂(g)$, consistent with the high-temperature mass spectroscopic results of Schoonmaker, Friedman, and Porter.⁹³ Results from these investigators might also be used to calculate approximate ΔG_f° and S° values for (CrCl₂)₂(g).

The NBS 270-4 lists S° = 29.38 cal K⁻¹ mol⁻¹ for $CrCl₃(c)$, which is the value derived by Hansen and Griffel⁸⁴ from their C_p measurements. A weighted average of results cited in NBS Circular 500⁷³ and by Sano⁹⁴ is consistent with ΔH_f° = -133.0 kcal mol⁻¹ for CrCl₃(c) as listed in NBS 270-4 and as adopted here. These values lead to ΔG_f° = -116.2 kcal mol⁻¹ for CrCl₃(c).

There are also two other routes to the ΔH_f° of CrCl₃(c). Vasil'kova et al.⁹⁵ have made calorimetric measurements with results that we combine with our tabulated ΔH° of CrO₃(c) to obtain $\Delta H_f^{\circ} = -124$ kcal mol⁻¹ for CrCl₃(c). Or we may combine some of the results of Vasil'kova et al.⁹⁵ with the enthalpy of solution of $CrCl₃(c)$ reported by Gregory and Burton⁹⁶ to obtain $\Delta H_f^{\circ} = -130$ kcal mol⁻¹ for CrCl₃(c). Because it is not certain that the same Cr(lll) species were formed in all of these experiments, $95,96$ this last calculation that involves combination of results obtained under different conditions may be unjustified

Maier's⁹¹ work leads to $\Delta H_f^{\circ} = -71$ kcal mol⁻¹, S^o = 84 cal K⁻¹ mol⁻¹, and $\Delta G_f^{\circ} = -71$ kcal mol⁻¹ for CrCl₃(g).

The NBS 270-4 lists $\Delta H_f^{\circ} = -72.2$ kcal mol⁻¹ for $CrBr₂(c)$, a value that is consistent with our calculations (± 1) or 2 kcal mol⁻¹) based on the high-temperature equilibrium results of Shchukarev et al.⁹⁷ We estimate $S^{\circ} = (32)$ cal K⁻¹ mol⁻¹ and combine with the ΔH_f° above to obtain ΔG_f° = -69 kcal mol⁻ⁱ for CrBr₂(c). The high-temperature vaporization measurements of Sime and Gregory⁹⁸ and the mass spectral investigations of Schoonmaker et al.⁹³ lead to ΔH_f° $=$ -17 kcal mol⁻¹ for CrBr₂(g) and $\Delta H_f^{\circ} = -84$ kcal mol⁻¹ for $(CrBr₂)₂(g)$ as listed in NBS 270-4. We also have $S^o =$ 80.62 cal K^{-1} mol⁻¹ for CrBr₂(g) from Shaw and Porter⁹² and thence $\Delta G_f^{\circ} = -28.5$ kcal mol⁻¹ for CrBr₂(g).

It is possible to use quantities reported by Rupcheva et al.⁹⁹ to calculate $\Delta H_f^{\circ} = -97.4$ and -76.6 kcal mol⁻¹ for $CrBr₃(c)$, with no clear indication as to the reliability of either value. We therefore omit $CrBr₃(c)$ from our Table I. It might also be noted that the properties listed by Rupcheva et al.⁹⁹ for $CrBr₂(c)$ are much different from those cited above.

Combination of the calorimetric results of Gregory and Burton⁹⁶ with our tabulated ΔH_f° of CrCl₂(c) leads to ΔH_i° = -37.5 kcal mol⁻¹ for Crl₂(c), which is also the value listed in NBS 270-4 for this compound. We estimate $S^{\circ} = (37)$ cal kcal mol⁻¹ for $\text{CrI}_2(c)$. K⁻¹ mol⁻¹ and combine with the ΔH_f° to obtain $\Delta G_f^{\circ} = -39$

Allen¹⁰⁰ has made vapor pressure measurements on Crl₂(c) and has used a second law method to calculate ΔH° of vaporization at 298 K, which we combine with the ΔH_i° of Crl₂(c) to obtain ΔH_f° = 34 kcal mol⁻¹ for Crl₂(g), as compared with ΔH_f° = 24 kcal mol⁻¹ listed in NBS 270-4. Our third law treatment of Allen's¹⁰⁰ results leads to somewhat smaller values for ΔH° of vaporization and ΔH_f° . We adopt ΔH_f° = 32 kcal mol⁻¹ for Cr1₂(g) and combine with S° = 84.15 cal K^{-1} from Shaw and Porter⁹² (whose results were also used in our third law calculations) to obtain $\Delta G_f^{\circ} = 17$ kcal mol⁻¹ for CrI₂(g).

Combination of the calorimetric results of Gregory and Burton⁹⁶ with our tabulated ΔH_f° of CrCl₃(c) leads to ΔH_i° = -45.8 kcal mol⁻¹ for Crl₃(c). We also use the results of de-

*^a*Italicized **values** agree with values in NBS 270-4 or NBS 270-6. Values in parentheses are estimates. * From NBS 270-4, adjusted for different ΔH_1° of Cr(g). ^c i.s. = inner sphere. ^{*d*} o.s. = outer sphere.

composition studies on CrI₃(c) by Handy and Gregory¹⁰¹ and by Shieh and Gregory¹⁰² with our tabulated ΔH_i^o for Crl₂(c)
to obtain ΔH_i^o = -50 kcal mol⁻¹ for Crl₃(c). Their results^{101,102} are also consistent with $S^{\circ} = 47$ cal K^{-1} mol⁻¹

and thence $\Delta G_f^{\circ} = -50$ kcal mol⁻¹ for Crl₃(c). We adopt $\Delta H_f^{\circ} = -49$ kcal mol⁻¹, $S^{\circ} = 47$ cal K⁻¹ mol⁻¹, and ΔG_f° $= -49$ kcal mol⁻¹ for Crl₃(c).

Handy and Gregory¹⁰³ have made high-temperature equi-

librium measurements on decomposition of $Cr|Cl₂(c)$ and CrIBr₂(c), with results that we combine with our tabulated ΔH_f° values for CrCl₂(c) and CrBr₂(c) to obtain $\Delta H_f^{\circ} = -100$ kcal mol⁻¹ for CrlCl₂(c) and $\Delta H_f^{\circ} = -79$ kcal mol⁻¹ for CrIBr₂(c). These same values are listed in NBS 270-4. We use the thermodynamic properties to calculate $\Delta H^{\circ} = -16$ kcal mol⁻¹ of Crl₃(c) for

$$
3Cr|Cl2(c) = 2CrCl3(c) + CrI3(c)
$$

This indication that $Cr|C|_2(c)$ is unstable with respect to the $CrX₃$ compounds suggests that further work is needed.

Lascelles, Shelton, and Schäfer¹⁰⁴ have carried out hightemperature measurements on the CrCl₂-AICl₃ system. We are unable to use either their reported K values or their equation for $K(T)$, which is inconsistent with the reported K values, for calculation of thermodynamic properties to list in Table I for the postulated $CrCl₂·2AlCl₃(q)$.

Vasil'kova et al.¹⁰⁵ have reported results of their calorimetric measurements on various "chlorochromates (Ill)" and summarized results of some related earlier work. Although it is possible to calculate values of ΔH_f° (from the elements) for various $M_3CrCl_6(c)$ and $M_3Cr_2Cl_9(c)$ compounds $(M = al$ kali metal) from their results, it may be more useful to have available the enthalpies of formation from the constituent halides as in Table ll. We also call attention to related high-temperature vaporization measurements by Galitskii et al.,¹⁰⁶ whose results do not permit us to calculate any thermodynamic properties for our tables. It should also be noted that Cook'07 has concluded from phase equilibrium data that $Na₃Cr₂Cl₉(c)$ is apparently nonexistent.

Now we turn to consideration of the thermodynamic properties of aqueous chromic [Cr(lll)] and chromous [Cr(ll)] ions, beginning with the latter and then continuing with a large number of Cr(lll) species.

Gregory and Burton⁹⁶ have measured the enthalpy of solution of CrCl₂(c) in 1.0 M Cl⁻(aq), with a result in fair agreement with an earlier⁴⁵ enthalpy of solution. Combination of these experimental results with our estimated enthalpies of dilution and the ΔH_f° of CrCl₂(c) is consistent with ΔH_f° = -34.3 kcal mol⁻¹ for Cr²⁺(aq) as listed in NBS 270-4. We estimate $S^{\circ} = (-24)$ cal K^{-1} mol⁻¹ and combine with the ΔH_f° to obtain $\Delta G_f^{\circ} = -35$ kcal mol⁻¹ for Cr²⁺(aq). This $\Delta G_{\text{f}}^{\,\text{o}}$ leads to the potential

$$
Cr^{2+}(aq) + 2e^- = Cr(c) \qquad E^{\circ} = -0.76 \text{ V}
$$

Jenkins, Mamantov, and Manning¹⁰⁸ have reported E° for the $Cr(II)|Cr(c)$ couple in molten fluoride medium.

The NBS 270-4 lists $\Delta H_f^{\circ} = -477.8$ kcal mol⁻¹ for $Cr(H_2O)_6^{3+}(aq)$, which corresponds to $\Delta H_1^{\circ} = -477.8 - 6$ $(-68.315) = -67.9$ kcal mol⁻¹ for Cr³⁺(aq) in which we do not explicitly include any water. Our assessment of various experimental results leads us to a considerably less negative ΔH_f° as described below.

The calorimetrically determined¹⁰⁹ enthalpy of reduction of Cr(VI) in acidic solution to Cr(lll) in combination with our tabulated properties of $Cr_2O_7^{2-}$ (aq) and HCrO₄⁻(aq) leads to ΔH_i° = -58 kcal mol⁻¹ for Cr³⁺(aq).

We have other calorimetric results (cited below) that we can use for evaluation of ΔH_f° of Cr³⁺(aq). For this purpose we must make use of ΔH° values for dissociation of $CrCl²⁺(aq)$ and $CrCl₂⁺(aq)$ as discussed later in this section.

Neuman, Kroger, and Kunz (cited by Bichowsky and Rossini45) have determined the enthalpy of solution of Cr(c) in HCl(aq). Assuming that $CrCl₂⁺(aq)$ was the principal Cr(III) species in their solutions, we obtain $\Delta H_f^{\circ} = -61$ kcal mol⁻¹ for $Cr^{3+}(aq)$. Assuming that $CrCl^{2+}(aq)$ was the principal species leads to $\Delta H_f^{\circ} = -56$ kcal mol⁻¹ for Cr³⁺(aq).

Gregory and Burton⁹⁶ have measured the enthalpy of solution of CrCI₃(c) in 1.0 M CI⁻(aq). Assuming that CrCI₂⁺(aq)

TABLE II. Enthalpies of Reaction¹⁰⁵

 $mMCI(c)$ \bullet $mCrCl_3(c) = M_nCr_mCl_{3m+n}(c)$

	$M_nCr_mCl_{3m+n}$ $\Delta H^{\circ}/\text{kcal}$ mol ⁻¹ $M_nCr_mCl_{3m+n}$ $\Delta H^{\circ}/\text{kcal}$ mol ⁻¹		
Na ₃ CrCl ₆	0.7	NaRb ₂ CrCl ₆	-14.9
K_3 CrCl ₆	-11.0	NaCs ₂ CrCl ₆	-20.6
RbaCrCle	-16.0	$K_3Cr_2Cl_9$	-12.7
Cs ₃ CrCl ₆	-18.4	Rb ₃ Cr ₂ Cl ₉	-25.8
NaK ₂ CrCl ₆	-8.0	Cs ₃ Cr ₂ Cl ₉	-34.7

was the principal species in solution, we calculate ΔH_i° = -56 kcal mol⁻¹ for Cr³⁺(aq), while the choice of CrCl²⁺(aq) as principal species in solution leads to $\Delta H_f^{\circ} = -51$ kcal mol⁻¹ for $Cr^{3+}(aa)$.

Shchukarev et al.⁹⁵ have also measured the enthalpy of solution of $CrCl₃(c)$, using 0.12 M $Cl⁻(aq)$ as solvent. Assuming that $CrCl²⁺(aq)$ was the principal species in solution leads to ΔH_f° = -57 kcal mol⁻¹ for Cr³⁺(aq), while choice of $CrCl₂⁺(aq)$ as principal solute species leads to $\Delta H_f^{\circ} = -62$ kcal mol⁻¹ for $Cr^{3+}(aq)$.

On the basis of all of the results above $[\Delta H_f^{\circ} = -58,$ -61 , -56 , -56 , -51 , -57 , and -62 kcal mol⁻¹ for $Cr^{3+}(aq)$, we choose $\Delta H_f^{\circ} \simeq -57$ kcal mol⁻¹ for $Cr^{3+}(aq)$, which corresponds to $\Delta H_f^{\circ} \simeq -467$ kcal mol⁻¹ for $Cr(H₂O)₆³⁺(aq)$. These values are 11 kcal mol⁻¹ less negative than corresponding values from NBS 270-4. Further measurements are required to establish satisfactorily the thermodynamic properties of this important ion.

We note that Gross, Wilson, and Gutteridge¹¹⁰ have measured the enthalpy of solution of Cr(c) in aqueous HCI-FeCl₃ at 110 °C with results that are roughly consistent with our choice above.

Now we have two unsatisfactory routes to the ΔG_f° and *S*^o of Cr³⁺(aq). Grube and Schlecht¹¹¹ have measured potentials for Cr(III) Cr(II) couples in several solutions, using several different "inert" electrodes. We select $E^{\circ} \simeq -0.43$ V (uncertainty $\pm 0.1_3$ V?) for the Cr³⁺(aq)| Cr²⁺(aq) couple and combine with the ΔG_f° of Cr²⁺(aq) cited above to obtain $\Delta G_f^{\circ} \simeq -45$ kcal mol⁻¹ for Cr³⁺(aq). Combination of this ΔG_f° with our selected $\Delta H_f^{\circ} = -57$ kcal mol⁻¹ for Cr³⁺(aq) leads to $S^{\circ} \simeq -81$ cal K⁻¹ mol⁻¹ for this ion. Because this entropy seems to be too negative in comparison with entropies of some other $3+$ aqueous ions, we also consider an alternative approach that begins with an estimated (more reasonable?) $S^{\circ} \simeq (-72)$ cal K⁻¹ mol⁻¹ for Cr³⁺(aq). Now combination of this entropy with our selected ΔH_f° leads to $\Delta G_f^{\circ} \simeq -48$ kcal mol⁻¹ for Cr³⁺(aq) and thence to a calculated $E^{\circ} \simeq -0.5_{6}$ V for the Cr³⁺(aq) Cr²⁺(aq) couple. Because of substantial uncertainties throughout the calculations summarized here, we arbitrarily select mean values as follows: $\Delta G_f^{\circ} \simeq -46.5$ kcal mol⁻¹ and $S^{\circ} \simeq -76$ cal K⁻¹ mol⁻¹ for Cr³⁺(aq). These values correspond to $\Delta G_f^{\circ} \simeq$ -386.6 kcal mol⁻¹ and $S^{\circ} \simeq 24$ cal K⁻¹ mol⁻¹ for $Cr(H₂O)₆³⁺(aq)$ in which specifically indicated waters of solvation are included in the thermodynamic properties. Our selected ΔG_f° values correspond to the following potentials:

$$
Cr^{3+}(aq) + e^- = Cr^{2+}(aq) \t E^{\circ} = -0.5_0 \text{ V}
$$

$$
Cr^{3+}(aq) + 3e^- = Cr(c) \t E^{\circ} = -0.67 \text{ V}
$$

 $Cr_2O_7^2$ ⁻(aq) + 14H⁺(aq) + 6e⁻ = 2Cr³⁺(aq) + 7H₂O(liq)

$$
E^{\circ} = 1.29 \text{ V}
$$

$$
HCrO_4^-(aq) + 7H^+(aq) + 3e^- = Cr^{3+}(aq) + 4H_2O(iiq)
$$

$$
E^{\circ} = 1.31 \text{ V}
$$

Jenkins, Mamantov, and Manning¹⁰⁸ have measured the Cr(lll)/Cr(ll) potential in molten fluoride medium.

In the early years of this century N. Bjerrum found it neces-

sary to interpret his emf determinations of $H^+(aa)$ in Cr(III) solutions in terms of hydrolytic dimers and polymers as well as such monomeric species as $Cr(OH)^{2+}(aq)$. Since that time a number of investigators have confirmed the importance of species containing more than one Cr(lll), and by taking advantage of kinetic inertness have isolated a few such species. Results^{75, 112, 113} are summarized briefly as follows. Solutions containing appreciable concentrations of dimers and larger species can be obtained by refluxing chromium(III) perchlorate solutions, by making the pH of many solutions containing Cr(lll) greater than about **3,** and by oxidation of Cr(ll) or reduction of Cr(VI) solutions. Dimeric and trimeric species bearing charges of **+4** and **+5** have been identified and equilibrium quotients for their formation have been reported. Dimers and larger species must certainly be considered in connection with many solutions in equilibrium with precipitated chromic hydroxide.

We begin our consideration of hydrolytic species of Cr(III) with the first hydroxy complex, which can be represented by $Cr(H₂O)₅(OH)²⁺(aq)$ or by $Cr(OH)²⁺(aq, inner sphere)$. Meyenburg, Siroky, and Schwarzenbach¹¹⁴ have recently investigated the equilibrium that we represent by

$$
Cr(H2O)63+(aq) = Cr(H2O)5(OH)2+(aq) + H+(aq)
$$
 (4)

at 5 and 20 °C in 0.1 M solution. Swaddle and Kong¹¹⁵ have investigated the same reaction at **25'** and other temperatures in 0.5 M solution. Earlier investigations have been cited by Sillén.⁷⁵ On the basis of all these results, we choose $K(\mu)$ $= 0$, 298 K) = 1.6 \times 10⁻⁴ for the equilibrium represented by (4). We use this value with our ΔG_f° of Cr(H₂O)₆³⁺(aq) to calculate $\Delta G_f^{\circ} = -381.4$ kcal mol⁻¹ for Cr(H₂O)₅(OH)²⁺(aq). We also obtain $\Delta G_f^{\circ} = -98.0$ kcal mol⁻¹ for the equivalent $Cr(OH)^{2+}(aq, inner sphere)$.

The NBS 270-4 ΔH_f° values correspond to $\Delta H^{\circ} = 14.2$ kcal mol⁻¹ for (4), while values tabulated in the older NBS Circular 500⁷³ lead to $\Delta H^{\circ} = 14.3$ kcal mol⁻¹ for this reaction. Results in the papers cited there73 *suggest* to us that a smaller ΔH° might be better for this reaction. Three more recent investigations¹¹⁴⁻¹¹⁶ of equilibrium constants at different temperatures are all consistent with $\Delta H^{\circ} = 10$ kcal mol^{-1} for the reaction represented by (4), which is the value we adopt and use in calculating $\Delta H_f^{\circ} = -457$ kcal mol⁻¹ for Cr(H₂O)₅(OH)²⁺(aq). Combination of ΔH_f° and ΔG_f° values leads to $S^{\circ} = 42$ cal K⁻¹ mol⁻¹ for Cr(H₂O)₅(OH)²⁺(aq). We also obtain $\Delta H_1^{\circ} = -115$ kcal mol⁻¹ and $S^{\circ} = -42$ cal K⁻¹ mol⁻¹ for the equivalent Cr(OH)²⁺(aq, inner sphere). This latter entropy is more negative than is usual for **2+** ions, which suggests that there may be an error in the results for reaction **4** or that there is an error in the entropy adopted for $Cr^{3+}(aq)$.

It is important to emphasize here that the ΔH_f° , ΔG_f° , and S^o values in the paragraph above are based on our choices for Cr(H₂O)₆³⁺(aq) and Cr³⁺(aq), with our ΔH_f° values for these ions 11 kcal mol⁻¹ less negative than previously selected in NBS 270-4. Further, our ΔH_f° values for Cr(H_2O)₅- $(OH)²⁺(aq)$ and Cr(OH)²⁺(aq, inner sphere) are different from those in NBS **270-4** because we have selected a different ΔH° for reaction 4 than was selected by the authors of NBS **270-4.**

For the second hydrolysis of $Cr^{3+}(aq)$ that can be represented by

$$
\text{Cr}(\text{H}_2\text{O})_5(\text{OH})^{2+}(aq) = \text{Cr}(\text{H}_2\text{O})_4(\text{OH})_2 + (aq) + \text{H}^+(aq)
$$

we choose $K = 10^{-7}$ from the results of several investigations.^{75,114} The ΔH_f° values listed in NBS 270-4 correspond to $\Delta H^{\circ} = 7.8$ kcal mol⁻¹ for this reaction, in agreement with results of Bjerrum cited previously $7^{3,75}$ and with the more recent results of Meyenburg, Siroky, and Schwarzenbach.¹¹⁴ **All** of these results, in combination with our tabulated properties of Cr(H₂O)₅(OH)²⁺(aq), lead to $\Delta G_f^{\circ} = -372$ kcal mol⁻¹,

 $\Delta H^{\circ} = -449$ kcal mol⁻¹, and $S^{\circ} \simeq 35$ cal K⁻¹ mol⁻¹ for $Cr(H₂O)₄(OH)₂⁺(aq)$. We also obtain $\Delta G₁^o = -145$ kcal mol^{-1} , $\Delta H_i^{\circ} = -176$ kcal mol⁻¹, and $S^{\circ} \approx -32$ cal K⁻¹ mol⁻¹ for the equivalent Cr(OH)₂⁺(aq, inner sphere). We note that this latter entropy is considerably more negative than is usual for **I+** ions.

On the basis of old^{75} and recent¹¹⁴ investigations, we choose the following solubility product for precipitated chromic hydroxide:

$$
Cr(OH)3(ppt) = Cr3+(aq) + 3OH-(aq) \t Ksp = 10-30
$$

Combination of this $K_{\rm SD}$ with our ΔG_f° for Cr³⁺(aq) leads to $\Delta G_f^{\circ} = -200.2$ kcal mol⁻¹ for Cr(OH)₃(ppt). The ΔH° of the reaction above that is derived from the NBS 270-4 ΔH ^o values in combination with our other thermodynamic properties leads to a negative S° for Cr(OH)₃(ppt), which is clearly unacceptable. We may also obtain an approximate ΔH° for this reaction from the work of Meyenburg, Siroky, and Schwarzenbach,¹¹⁴ which leads to $S^{\circ} \simeq 8$ cal K⁻¹ mol⁻¹ for $Cr(OH)_{3}(ppt)$. This S^{0} is only about one-third of a "reasonable" estimate for this quantity. In view of these calculations, we omit ΔH_f° and S° values for Cr(OH)₃(ppt) from our Table I.

It is well established that $Cr(OH)_3(ppt)$ and various other $Cr(III)$ compounds dissolve in excess $OH₋(aq)$ to yield anions containing Cr(III). The work of Schug and King¹¹⁷ has shown that these "chromite" solutions cannot be realistically described in any simple way. Nevertheless, we use results summarized by Sillen⁷⁵ to calculate an approximate $\Delta G_f^{\circ} \simeq$ -236 kcal mol⁻¹ for "chromite" ion that we represent in over-simplified fashion by Cr(OH)₄⁻(aq). This ΔG_f° is consistent with the following:

$$
Cr(OH)3(ppt) + OH-(aq) = Cr(OH)4-(aq) \t K \simeq 10-1
$$

 $CrO_4^{2-}(aq) + 4H_2O(liq) + 3e^- = Cr(OH)_4^{-(aq)} + 4OH^{-}(aq)$

$$
E^{\rm o} \simeq -0.2, V
$$

We also use calorimetric results from Schug and King¹¹⁷ to obtain $\Delta H_f^{\circ} = -298$ kcal mol⁻¹ and $S^{\circ} \approx -26$ cal K⁻¹ mol⁻¹ for Cr(OH)₄⁻(aq). In connection with these thermodynamic properties it must be emphasized that Schug and King¹¹⁷ have stated clearly that "chromite" solutions do *not* have the properties that might be expected for solutions of $"Cr(OH)₄$ ⁻(aq)."

The stability of $CrF^{2+}(aq)$ has been investigated by Swaddle and King,¹¹⁸ who have also cited earlier work. The $CrF^{2+}(aq)$ ion is less stable with respect to dissociation than the corresponding ions of iron, scandium, and aluminum, but is more stable than similar ions of indium, yttrium, and lanthanum.

Results of several investigators' **19-123** are in reasonable agreement with $K = 0.2$ for the reaction

$$
Cr(H_2O)_6^{3+}(aq) + Cl^{-}(aq) = Cr(H_2O)_5Cl^{2+}(aq) + H_2O(liq)
$$

This *K* value leads to $\Delta G_f^{\circ} = -360.3$ kcal mol⁻¹ for Cr- $(H_2O)_5Cl^2$ ⁺(aq) and also to $\Delta G_f^{\circ} = -76.9$ kcal mol⁻¹ for the equivalent CrCl²⁺(aq, inner sphere). Results of some of these investigations¹²⁰⁻¹²² are also consistent with $\Delta H^{\circ} = 5$ kcal mol⁻¹ for this reaction. We calculate $\Delta H_f^{\circ} = -434$ kcal mol⁻¹ and S° = 35 cal K⁻¹ mol⁻¹ for Cr(H₂O)₅Cl²⁺(aq), and also obtain $\Delta H_f^{\circ} = -92$ kcal mol⁻¹ and $S^{\circ} = -49$ cal K⁻¹ mol⁻¹ for the equivalent CrCl²⁺(aq, inner sphere).

The work of Morris and Hammond¹²³ leads to $K (\mu = 1.0$ **M)** = **0.9** for formation of the outer-sphere complex represented by

$$
Cr(H_2O)_6^{3+}(aq) + Cl^{-}(aq) = Cr(H_2O)_6Cl^{2+}(aq)
$$

A somewhat smaller equilibrium quotient was found by Gates

and King¹²² for solutions having higher ionic strength. We use the former result¹²³ to obtain $\Delta \vec{G}^{\circ} = -417.9$ kcal mol⁻¹ for Cr(H₂O)₆Cl²⁺(aq) and also $\Delta G_f^{\circ} = -77.8$ kcal mol⁻¹ for the equivalent $CrCl²⁺(aq, outer sphere)$.

From investigations cited by Sillen^{75,112} we adopt $K = 0.1$ for

$$
Cr(H_2O)_5Cl^{2+}(aq) + Cl^{-}(aq)
$$

 $= Cr(H₂O)₄Cl₂⁺(aq) + H₂O(liq) (5)$

This *K* leads to $\Delta G_f^{\circ} \simeq -336.3$ kcal mol⁻¹ for Cr- $(H_2O)_4Cl_2^+(aq)$ and also to $\Delta G_f^{\circ} \simeq -109.6$ kcal mol⁻¹ for the equivalent CrCl₂⁺(aq, inner sphere). Measurements by King et al.^{117,122} lead to $\Delta H^{\circ} = 5$ kcal mol⁻¹ for this reaction and thence to $\Delta H_f^{\circ} \simeq -401$ kcal mol⁻¹ for Cr(H₂O) $_{4}$ Cl₂⁺(aq) and to $\Delta H_0^{\circ} \simeq -127$ kcal mol⁻¹ for the equivalent $CrCl₂⁺(aq, inner sphere)$. Combination of enthalpies and free energies leads to $S^{\circ} \simeq 52$ cal K⁻¹ mol⁻¹ for Cr(H₂O)₄- Cl_2 ⁺(aq) and to $S^{\circ} \simeq -15$ cal K⁻¹ mol⁻¹ for CrCl₂⁺(aq, inner sphere).

Results of several investigators¹²⁴ are in agreement with *K* $= 2 \times 10^{-6}$ for

$$
Cr(H2O)4Cl2+(aq) = Cr(H2O)3(OH)Cl2(aq) + H+(aq)
$$

We calculate $\Delta G_f^{\circ} \simeq -328.5$ kcal mol⁻¹ for Cr(H₂O)₃-(OH)CI₂(aq) and $\Delta G_f^{\circ} \simeq -158.4$ kcal mol⁻¹ for the equivalent Cr(OH)Cl₂(aq, inner sphere).

The Cr(H₂O)₄Cl₂⁺(aq) species can exist in cis and trans forms. Two investigations¹²⁵ are consistent with $K = 0.5$ for cis = trans and the conclusion that the cis form is **0.4** kcal mol^{-1} more stable than the trans form.

Equilibrium investigations by Espenson and King126 are consistent with $K = 2 \times 10^{-3}$ and $\Delta H^{\circ} = 5$ kcal mol⁻¹ for

$$
Cr(H_2O)_6^{3+}(aq) + Br^{-}(aq) = Cr(H_2O)_5Br^{2+}(aq) + H_2O(liq)
$$

We calculate $\Delta G_f^{\circ} \simeq -351.7$ kcal mol⁻¹, $\Delta H_f^{\circ} \simeq -422.7$ k calculate $\Delta G_f \cong 0.91.1$ **Kearmole 1.474** $\cong -422.7$
kcal mol⁻¹, and $S^{\circ} \cong 41.5$ cal K⁻¹ mol⁻¹ for Cr(H₂O)₅-Br2+(aq), and also obtain AGfo = **-67.7** kcal mol-', AHf' \simeq -81.₁ kcal mol⁻¹, and $S^{\circ} \simeq$ -42 cal K⁻¹ mol⁻¹ for the equivalent CrBr²⁺(aq, inner sphere). Old calorimetric results from Recoura⁴⁵ lead to $\Delta H_f^{\circ} = -377.1$ kcal mol⁻¹ for $Cr(H_2O)_4Br_2^+(aq)$ and to $\Delta H_f^{\circ} \simeq -103.8$ kcal mol⁻¹ for the equivalent $CrBr_2^+(aq, inner sphere)$.

Results of Spreer and King¹²⁷ lead to $K(\mu = 4.1) = 0.2$ for

 $Cr(H₂O)₆^{3+}(aq) + Br⁻(aq) = Cr(H₂O)₆Br²⁺(aq)$

From Swaddle and Guastalla¹²⁸ we have equilibrium quotients at several temperatures for replacement of water in $Cr(H_2O)_6^{3+}$ (aq) by iodide ion; at 25 °C they give *K* ($\mu = 4.2$) $= 7 \times 10^{-5}$.

Espenson and Binau¹²⁹ have reported *K* (μ = 1.0) values from **45-65** OC for

 $Cr(H₂O)₆³⁺(aq) + H₃PO₂(aq)$

$$
= [Cr(H_2O)_5H_2PO_2]^{2+}(aq) + H^+(aq) + H_2O(iiq)
$$

We use their derived enthalpy and entropy to calculate $K(\mu)$ $= 1.0$) $= 17$ at 25 °C.

Two investigations¹³⁰ have provided enthalpy data for cistrans transformations for $[CrCl_2(NH_3)_4]Cl·H_2O(c)$ and $[CFBr(H₂O)(NH₃)₄]Br₂(c).$

Jones and Bjerrum¹³¹ have made measurements on concentrated solutions with results that lead to estimates of the stability of the inner-sphere complex $Cr(H_2O)_5ClO_4^{2+}(aq)$.

Results of Mercer and Hormuth¹³² lead to $K (\mu = 0.5)$ = 1.3×10^2 for

$$
Cr^{3+}(aq) + 2IO_3^{-}(aq) = Cr(IO_3)_2^{+}(aq)
$$

Ardon and Sutin¹³³ have reported $K(\mu = 1.0) = 1 \times 10^{-2}$ for

$$
Cr^{3+}(aq) + NO_3^{-}(aq) = Cr(NO_3)^{2+}(aq)
$$

Their *K* values at several temperatures also lead to enthalpies and entropies.

Results of two investigations¹³⁴ of aqueous chromic sulfate complexes are in poor agreement with each other, although it does appear to be well established that there is a kinetically inert inner-sphere complex and a labile outersphere complex.

Measurements by Hume and Kolthoff¹³⁵ have led to the following:

$$
Cr(CN)_6{}^{3-}(aq) + e^- = Cr(CN)_6{}^{4-}(aq) \qquad E^{\circ} = -1.28 \text{ V}
$$

Guzzetta and Hadley¹³⁶ have reported calorimetric data for formation of $Cr(CN)₆^{4–}(aa)$, but their results do not justify calculation of a ΔH_f° value.

Poulsen, Bjerrum, and Poulsen¹³⁷ and Postmus and King¹¹⁶ have investigated the chromic thiocyanate complex at several temperatures and ionic strengths. From the latter investigation¹¹⁶ we take the following:

$$
Cr(H2O)63+(aq) + SCN-(aq) = Cr(H2O)5SCN2+(aq) + H2O(liq)K = 1.2 × 103 ΔHo = -2.13 kcal mol-1ΔSo = 6.9 cal K-1 mol-1
$$

We use these values in calculating $\Delta G_f^{\circ} \simeq -312.0$ kcal mol⁻¹, $\Delta H_1^{\circ} \simeq -382.5$ kcal mol⁻¹, and $S^{\circ} \simeq 49$ cal K⁻¹ mol⁻¹ for Cr(H₂O)₅SCN²⁺(aq), and also $\Delta G_f^{\circ} \simeq -28.6$ kcal mol⁻¹, $\Delta H_f^{\circ} \simeq -40.9$ kcal mol⁻¹, and $S^{\circ} \simeq -35$ cal K⁻¹ mol⁻¹ for the equivalent Cr(SCN)²⁺(aq, inner sphere).

Templeton and King¹³⁸ have investigated the protonation of the chromic azide complex and report the following **(30** $^{\circ}$ C):

$$
Cr(N_3)^{2+}(aq) + H^+(aq) = Cr(N_3)H^{3+}(aq) \qquad K = 2.7 \times 10^3
$$

Equilibrium¹³⁹ and calorimetric¹⁴⁰ measurements have led to the following:

$$
Cr(NH3)5(H2O)3+(aq) = Cr(NH3)5(OH)2+(aq) + H+(aq)
$$

$$
K = 1 \times 10^{-5} \Delta Ho = 8.3 \text{ kcal mol}-1
$$

$$
\Delta So = 5.5 \text{ cal K}-1 mol-1
$$

Duffy and Earley¹⁴¹ have made extensive measurements on the replacement of $H₂O$ by thiocyanate and chloride in $Cr(NH₃)₅(H₂O)³⁺(aq)$ and have also investigated outer-sphere complex or ion-pair species involving this cation with thiocyanate and chloride. They have reported several K , ΔH° , and ΔS° values for these reactions. Guastalla and Swaddle¹⁴² have carried out both equilibrium and rate measurements on the aquation of chromic ammine halides and have obtained ΔV° and ΔV^{\mp} values for these reactions.

Equilibrium constants for formation of such species as $Cr(NCS)Hg^{4+}(aq)$, $Cr(NC)Hg^{4+}(aq)$, and $\{[Cr(NH₃)₅(NCS)]-$ Ag 3^+ (aq) have been reported.¹⁴³

DTA measurements leading¹⁴⁴ to ΔH values for deaquation of such compounds as $[Cr(NH₃)₅(H₂O)]X₃(c)$ and $K_3[Cr(C_2O_4)_3]\cdot 3H_2O(c)$ are generally in poor agreement with other measurements on the same compounds. Some reported *AH* values for reactions where the products are $H₂O(liq)$ and $H₂O(g)$, respectively, are inconsistent with the well-known enthalpy of vaporization of water.

For the spinel FeCr₂O₄(c) the NBS 270-4 lists $S^{\circ} = 34.9$ cal K^{-1} mol⁻¹, which is the same as the value derived from results previously cited by Kelley and King.²² The ΔH_f° = -345.3 kcal mol⁻¹ and $\Delta G_f^{\circ} = -321.2$ kcal mol⁻¹ given in NBS **270-4** for this compound are consistent with the hightemperature emf and equilibrium results obtained by Tretjakow and Schmalzried,³⁹ Boericke and Bangert,¹⁴⁵ Chen and Chipman,¹⁴⁶ and Katsura and Muan.¹⁴⁷ We therefore adopt the ΔH_f° and ΔG_f° values listed in NBS 270-4, rather than the properties derived from the high-temperature results of Novokhatskii and Lenev.³⁶

The NBS 270-6 lists $S^{\circ} = 25.34$ cal K⁻¹ mol⁻¹ for the spinel MgCr₂O₄(c), in agreement with the value derived from results cited by Kelley and King.²² The ΔH_1° = -426.3 kcal mol^{-1} that is listed in NBS 270-6 for this compound is in good agreement with the value we calculate from the hightemperature emf results of Tretjakow and Schmalzried³⁹ temperature emf results of Tretjakow and Schmalzried³⁹
[with (H_T – H₂₉₈) values from Kelley³⁷]. A slightly different [with $(H_T - H_{298})$ values from Kelley³⁷]. A slightly different
and probably better $\Delta H_f^{\circ} = -426.9$ kcal mol⁻¹ can be similarly calculated from the recent high-temperature $(900 \degree C)$ calorimetric results of Muller and Kleppa.¹⁴⁸ We combine kcal mol⁻¹ for MgCr₂O₄(c). this latter ΔH_f° with the S^o above to obtain $\Delta G_f^{\circ} = -399.5$

Calorimetric measurements by Müller and Kleppa¹⁴⁸ lead to ΔH° of formation of NiCr₂O₄(c) from the constituent oxides at 900 'C. Combination of this value with our estimated $(H_T - H_{298})$ leads to $\Delta H_f^{\circ} = -330.6$ kcal mol⁻¹ for Ni- $Cr₂O₄(c)$ at 298 K. This value appears to be preferable to that derived from the temperature derivative of the emf results of Tretiakow and Schmalzried.³⁹ Although the ΔH° based on these latter³⁹ results appears to have a large uncertainty, the uncertainty associated with ΔG° at any temperature is less large and can be used with estimated $(H_T - H_{298})$ and $(S_T S_{298}$) values and the calorimetric ΔH° cited above to obtain ΔG_f° and S° at 298 K. Or we can directly estimate S° at 298 K and combine with the above ΔH_f° to obtain ΔG_f° at 298 K. On the basis of these two approaches, we adopt $S^{\circ} = (31.5)$ cal K^{-1} mol⁻¹ and $\Delta G_f^{\circ} = -305.3$ kcal mol⁻¹ for Ni- $Cr₂O₄(c)$.

Calorimetric measurements by Müller and Kleppa¹⁴⁸ have led to ΔH° values for formation of ZnCr₂O₄(c) and $CdCr_2O_4(c)$ from their constituent oxides at 900 °C. Combination of these values with estimated $(H_T - H_{298})$ values leads to $\Delta H_f^{\circ} = -370.9$ kcal mol⁻¹ for ZnCr₂O₄(c) and ΔH_f° $= -344.3$ kcal mol⁻¹ for CdCr₂O₄(c), both at 298 K. We estimate $S^{\circ} = (30.5)$ cal K⁻¹ mol⁻¹ for ZnCr₂O₄(c) and calculate its $\Delta G_f^{\circ} = -344.4$ kcal mol⁻¹. We also estimate $S^{\circ} = (34)$ cal K⁻¹ mol⁻¹ for CdCr₂O₄(c) and calculate its ΔG_f° = -318.1 kcal mol⁻¹.

Calorimetric results from Müller and Kleppa¹⁴⁸ lead to ΔH° for formation of CuCr₂O₄(c) from the oxides at 900 °C. We combine this result with our estimated $(H_T - H_{298})$ to obtain ΔH_f° = -307.3 kcal mol⁻¹ at 298 K. We adopt this value rather than that derived from the temperature derivative of the high-temperature results of Schmahl and Minzl.¹⁴⁹ We proceed as described above for NiCr₂O₄(c) to obtain S° = (33) cal K^{-1} mol⁻¹ and $\Delta G_f^{\circ} = -282.2$ kcal mol⁻¹ for Cu- $Cr₂O₄(c)$.

Tretjakow and Schmalzried³⁹ and also Aukrust and Muan¹⁵⁰ have made measurements leading to apparently reliable ΔG° values (in satisfactory agreement with each other) for formation of $CoCr₂O₄(c)$ at high temperatures. Because there are substantial uncertainties in the derived ΔH° values and our calculation of thermodynamic properties at 298 K also requires estimated C_p or related properties, we omit this compound from our Table I.

Gross, Wilson, and Gutteridge¹¹⁰ have made calorimetric measurements leading to ΔH° of formation of NaCrO₂(c) from Na₂O(c) and Cr₂O₃(c) by way of somewhat uncertain reactions. We use their ΔH° value for this reaction with ΔH_f° $= -99.9$ kcal mol⁻¹ for Na₂O(c) from the JANAF tables¹⁵¹ with ΔH_f° for Cr₂O₃(c) from Table I to obtain $\Delta H_f^{\circ} = -210$ kcal mol⁻¹ for NaCrO₂(c).

Zalazinskii et al.¹⁵² have carried out high-temperature equilibrium measurements on the reduction of "cuprous chromite" of formula CuCrO₂(c). Our calculations with their results lead to $S^{\circ} \simeq 6$ cal K⁻¹ mol⁻¹ for this compound. Because this unreasonably small entropy value indicates either error or very large uncertainty, we do not list $CuCrO₂(c)$ in our Table I.

E. Cr(IV) and Cr(V): Compounds and Aqueous Ions

The NBS 270-4 lists $\Delta H_f^{\circ} = -298$ kcal mol⁻¹ for CrF₄(c), which is in agreement with the results of Wartenberg.¹⁵³ We estimate S° = (33) cal K⁻¹ mol⁻¹ and calculate ΔG_f° = -277 kcal mol⁻¹ for CrF₄(c).

The results of several investigators $91,154,155$ are in reasonable agreement with the NBS 270-4 $\Delta H_i^{\circ} = -102$ kcal mol^{-1} (maybe a slightly more negative value would be better) for CrCl₄(g). We combine this ΔH_f° with $S^{\circ} = 87.5$ cal K⁻ mol⁻¹ from Maier⁹¹ to obtain $\Delta G_f^{\circ} = -97.5$ kcal mol⁻¹ for $CrCl₄(q)$.

We can use the somewhat uncertain results of Sime and Gregory¹⁵⁶ for reaction of CrBr₃(c) with Br₂(g) with the more uncertain ΔH_f° of CrBr₃(c) discussed in the preceding section to obtain a ΔH_f° value for CrBr₄(g) that seems far too negative in comparison to ΔH_f° values for CrCl₄(g) and Crl₄(g). Shieh and Gregory¹⁰² have estimated ΔH_1° = (-42.6) kcal mol⁻¹ for CrBr₄(g), a value which seems more reasonable to us than the value we have calculated as described above. The S° has been estimated as (100.1) and (106.9) cal K^{-1} mol⁻¹. Because of all the uncertainties, we omit CrBr₄(g) from our Table I.

The results of Shieh and Gregory¹⁰² in combination with our ΔH_f° for Crl₃(c) leads to $\Delta H_f^{\circ} = 3$ kcal mol⁻¹ for Crl₄(g). Combination of this ΔH_f° with $S^{\circ} = 112$ cal K⁻¹ mol⁻¹ from Shieh and Gregory¹⁰² gives $\Delta G_f^{\circ} = -12$ kcal mol⁻¹ for $CrI₄(q)$.

We now consider approximate potentials for various couples involving aqueous Cr(lV) and Cr(V), beginning with alkaline solutions. Bailey and Symons¹⁸ have deduced an approximate ΔG_f° for the Cr(V) species they represent by $CrO₄³⁻(aq)$. Revision of their value to make it consistent with our ΔG_f° for CrO₄²⁻(aq) leads to $\Delta G_f^{\circ} = -176.3$ kcal mol⁻¹ for $CrO₄³⁻(aq)$ and thence the following potentials:

$$
CrO_4^{2-}(aq) + e^- = CrO_4^{3-}(aq) \qquad E^{\circ} = 0.1 V
$$

 $CrO₄³⁻(aq) + 4H₂O(liq) + 2e^- = Cr(OH)₃(ppt) + 5OH⁻(aq)$

$$
F^{\circ} = -0.6 \text{ V}
$$

 $CrO₄³⁻(aq) + 4H₂O(liq) + 2e^- = Cr(OH)₄⁻(aq) + 4OH⁻(aq)$

 $F^{\circ} = -0.7 \text{ V}$

Kinetic evidence¹⁵⁷ leads to generally consistent (approximate) potentials for various half reactions involving Cr(lV) and Cr(V) in acidic solutions. Another approach is to assume that the Cr(V) species in acidic solution is $H_3CrO_4(aq)$ and then calculate its free energy from the ΔG_f° above for $CrO₄³⁻(aq)$ and a ΔG° of protonation estimated by way of the known ΔG° of protonation of PO₄³⁻(aq). The following potentials (for acidic solutions) are consistent with all of this.

$$
Cr(VI) + e^- = Cr(V) \tF^{\circ} = 0.6 \tV
$$

\n
$$
Cr(VI) + 2e^- = Cr(IV) \tF^{\circ} = 0.95 \tV
$$

\n
$$
Cr(V) + e^- = Cr(IV) \tF^{\circ} = 1.3 \tV
$$

\n
$$
Cr(V) + 2e^- = Cr^{3+}(aq) \tF^{\circ} = 1.65 \tV
$$

\n
$$
Cr(IV) + e^- = Cr^{3+}(aq) \tF^{\circ} = 2.0 \tV
$$

These potentials (acidic solution) are conveniently summarized in the following potential diagram.

a Reference 35 (combustion calorimetry). Published values quoted here are based on $\Delta H_i^{\circ} = -272.6$ kcal mol⁻¹ for Cr₂O₃(c). ^b Results of ref 35 recalculated on the basis of our adopted $\Delta H_f^{\circ} = -272.4$ kcal mol⁻¹ for Cr₂O₃(c). Similar recalculation on the basis of $\Delta H_f^{\circ} = -270.0$ kcal mol⁻¹ for Cr₂O₃(c) as suggested by Kulkarni and Worrell⁴² leads to ΔH_t° values that are 1.2 kcal mol⁻¹ of Cr less negative than values given here. ^c Reference 42 (high-temperature equilibrium). Published values quoted here are based on their selected $\Delta H_f^{\circ} = -270.0$ kcal mol⁻¹ for Cr₂O₃(c). ^d Results of ref 42 recalculated to conform with our tabulated $\Delta H_f^{\circ} = -272.4$ kcal mol⁻¹ for Cr₂O₃(c). ^e Reference 161 (high-temperature emf). This value does not depend on ΔH_i^o of Cr₂O₃(c). ^f Reference 162 (high-temperature emf). These values do not depend on ΔH_i^o of Cr₂O₃(c). ^g Reference 27 (review of earlier works from 1926 to 1965). Some of these values are independent of properties assigned to Cr₂O₃(c).

F. Other Inorganic Compounds of Chromium

Wolf¹⁵⁸ has measured heat capacities of CrH_{$(x$} = 0.84, 0.91, and 0.94) and has evaluated entropies at 298 K as listed in Table I. For the compound or mixture of phases with composition described by Cr₇H₂(c) we adopt $\Delta H_f^{\circ} = -3.8$ kcal mol^{-1} as listed in NBS 270-4 and as consistent with the published results of Sieverts and Gotta.¹⁵⁹ We also note that Stock and Hardcastle¹⁶⁰ have carried out phase and composition analysis of the chromium hydride system.

The chromium carbides are of considerable importance in metallurgy and have been investigated several times^{27,35,42,161,162} by calorimetric, emf, and equilibrium methods. Results in the form of ΔH_f° values at 298 K are summarized in Table III. The wide range in reported ΔH_f° values cannot be resolved by our data analysis; still more measurements are required. The ΔH_f° values listed in the NBS 270-4 appear to be reasonable choices and are adopted for our Table I. Entropies listed in NBS 270-4 are all consistent with results summarized by Kelley and King.²² We also have $\Delta H_f^{\circ} \simeq 184$ kcal mol⁻¹ for CrC₂(g) from the work of Kohl and Stearns.¹⁶³

The NBS 270-4 lists $\Delta H_f^{\circ} = -30.5$ kcal mol⁻¹ for Cr₂N(c) and ΔH_f° = -29.8 kcal mol⁻¹ for CrN(c). This value for CrN(c) is consistent with results cited previously by Bichowsky and Rossini⁴⁵ and in NBS Circular $500.^{73}$ The value above for $Cr_2N(c)$ is identical with the value derived from Mah's¹⁶⁴ combustion calorimetry and the $\Delta H_1^{\circ} = -270.4$ kcal mol⁻¹ for Cr₂O₃(c) that has been adopted here and in NBS 270-4. Had we adopted $\Delta H_f^{\circ} = -270.0$ kcal mol⁻¹ for $Cr₂O₃(c)$ as suggested by other considerations,⁴² we would obtain $\Delta H_f^{\circ} = -28.1$ kcal mol⁻¹ for Cr₂N(c) from the combustion results. Results of various other calorimetric and high-temperature equilibrium studies^{45,73,165} lead to ΔH_f° values for CrN(c) and Cr₂N(c) that are equal to or less negative than the values listed in NBS 270-4. On the basis of all of these results, we select $\Delta H_f^{\circ} = -29$ kcal mol⁻¹ for CrN(c) and $\Delta H_f^{\circ} = -30$ kcal mol⁻¹ for Cr₂N(c). Combination of these values with $S^{\circ} = (6)$ cal K^{-1} mol⁻¹ for CrN(c) and S° = (12) cal K⁻¹ mol⁻¹ for Cr₂N(c) leads to the tabulated ΔG_f° values. Although several investigations¹⁶⁵ have shown that the nitrides are nitrogen deficient with stoichiometries (under particular conditions) that lead to formulas such as Cr2No 977(c) and CrNo **982(c),** we have followed earlier practice in using the simple formulas $Cr_2N(c)$ and $CrN(c)$.

Chart¹⁶⁶ has recently carried out a thorough review of the

thermodynamic properties of silicides of chromium (and other elements) and has selected "best" values for these properties. Our analysis of recent results^{24,167} cited by Chart¹⁶⁶ and earlier results cited in these recent papers leads to our selected (in Table I) ΔH_f° values that are identical with those selected by Chart¹⁶⁶ for all of the chromium silicides. All of these ΔH_f° values are less negative than values listed for the same compounds in NBS 270-4. Our selection of entropies is identical with that of Chart¹⁶⁶ except for a small difference for CrSi₂(c). Free energies (Table I) are consistent with the tabulated ΔH_f° and S° values.

Low-temperature *C,* measurements by Kalishevich et al.¹⁶⁸ lead to the entropies listed in Table I for CrGe(c), $Cr_5Ge_3(c)$, and $Cr_{11}Ge_{19}(c)$.

The high-temperature equilibrium results of Hager and Elliott¹⁶⁹ lead to $\Delta H_f^{\circ} = -32$ kcal mol⁻¹, $\Delta G_f^{\circ} = -33$ kcal mol⁻¹, and S° = 17 cal K⁻¹ mol⁻¹ for CrS(c). For CrS(q) we have $\Delta H_f^{\circ} \simeq 83$ kcal mol⁻¹ from Drowart et al.¹⁷⁰ We estimate S° = (60) cal K⁻¹ mol⁻¹ and then obtain $\Delta G_f^{\circ} \simeq 69$ kcal for CrS(g).

The entropies listed in NBS 270-4 and in our Table I for $Cr₂Te₃(c)$, $Cr₃Te₄(c)$, and $Cr₅Te₆(c)$ are consistent with the $C₆$ results of Gr ϕ nwold and Westrum.¹⁷¹ We also note that Gr ϕ nwold¹⁷² has reported high-temperature C_p and related properties for $Cr₃Te₄(c)$.

The NBS 270-4 has listed $\Delta H_f^{\circ} = -257.4$ kcal mol⁻¹ for $Cr(CO)_{6}(c)$, which is exactly the same as the value we calculate from the combustion results of Cotton, Fischer, and Wilkinson¹⁷³ and $\Delta H_f^{\circ} = -272.4$ kcal mol⁻¹ for Cr₂O₃(c) from NBS 270-4 and our Table I. More recently, Skinner and Virmani'74 have made calorimetric measurements on decomposition of $Cr(CO)_{6}(c)$ to $Cr(c)$ and $CO(g)$ and have obtained $\Delta H_f^{\circ} = -223.5$ kcal mol⁻¹ for Cr(CO)₆(c). Similar measurements by Connor, Skinner, and Virmani¹⁷⁵ have led to ΔH_i° = -222.9 kcal mol⁻¹ for Cr(CO)₆(c). These latter workers have also made calorimetric measurements on the iodination of $Cr(CO)_{6}(c)$. Combination of their results with ΔH_i° values already adopted here for Crl₂(c) and Crl₃(c) leads to $\Delta H_f^{\circ} = -234.3$ kcal mol⁻¹ for Cr(CO)₆(c). In the absence of any clear indication as to which of the results cited here is best, we hesitantly adopt $\Delta H_f^{\circ} = -234$ kcal mol⁻¹ (based on iodination measurements¹⁷⁵) for Cr(CO)₆(c).

 $= 17.0$ kcal mol⁻¹ for sublimation of Cr(CO)₆(c). This value is consistent with vapor pressure results cited by Cotton et al.¹⁷³ and also with more recent results.¹⁷⁶ We use this value with the ΔH_f° above for Cr(CO)₆(c) to obtain $\Delta H_f^{\circ} = -217$ kcal mol⁻¹ for Cr(CO)₆(g). Statistical calculations have led to S° = 116.5 cal K⁻¹ mol⁻¹ (ref 177) and to an apparently better S° = 111.6 cal K⁻¹ mol⁻¹ (ref 178) for Cr(CO)₆(g). We adopt the latter value and combine with the ΔH_1° of $Cr(CO)_{6}(g)$ to obtain its $\Delta G_{i}^{\circ} = -202$ kcal mol⁻¹. The ΔH_f° values listed in NBS 270-4 correspond to ΔH°

The vapor pressure results cited above are also consistent with $\Delta S^{\circ} = 40$ cal K^{-1} mol⁻¹ for sublimation of Cr(CO)₆(c) at 298 **K.** Combination of this **ASo** with our adopted *So* for $Cr(CO)_{6}(q)$ leads to $S^{\circ} = 72$ cal K^{-1} mol⁻¹ for $Cr(CO)_{6}(c)$, for which a value based on C_p measurements would be useful. Combination of this value with the ΔH_f° adopted above leads to $\Delta G_f^{\circ} = -207$ kcal mol⁻¹ for Cr(CO)₆(c).

Calorimetric measurements by Brown, Connor, and Skinner¹⁷⁹ lead to $\Delta H_1^{\circ} = -1446.4$ kcal mol⁻¹ for Cr(PF₃)₆(c), based on ΔH_1° = -228.89 kcal mol⁻¹ for PF₃(g).

G. Organic Compounds and Complexes

Thermochemical properties of a few organochromium compounds have been reviewed by Cox and Pilcher¹⁸⁰ and also by Ashcroft and Mortimer.¹⁸¹ These latter authors¹⁸¹ and also Martell^{75,112} have reviewed stabilities and other thermodynamic properties of organic complexes of Cr(lll) in aqueous solution. In our present review we limit discussion of organic compounds of chromium to brief mention of some recent investigations that have not been cited in these earlier revjews,75, 112,180,161

Before citing particular investigations, it is important to emphasize that comparisons of quantities reported in original papers or quantities listed in various reviews must be based on the same auxiliary data in order to be useful. For example, enthalpies of formation of organochromium compounds derived from combustion measurements must be based on the same ΔH_f° of formation of Cr₂O₃(c).

Connor, Skinner, and Virmani¹⁸² have made calorimetric measurements leading to ΔH_f° values for $Cr(C_6H_6)_2$, $Cr(C_6H_6)(CO)_3$, $Cr[C_6(CH_3)_6](CO)_3$, $Cr(C_6H_6)_2$ l, $Cr(C C_7H_8$)(CO)₃, and Cr(C₆H₅CH₃)(CO)₃.

Calorimetric measurements by Bradley and Hillyer¹⁸³ lead to ΔH_1° of Cr(OC₄H₉)₄.

Tel'noi et al.¹⁸⁴ have determined heats of combustion of $Cr(C_6H_6)_2$, $Cr(C_6H_6)_2Cl$, $Cr(C_6H_6)_2Br$, $Cr(C_6H_5CH_3)_2I$, $Cr[C_6H_4(CH_3)_2]_2$ l, and $Cr(C_6H_5C_6H_5)_2$ l.

Sorai, Tachiki, Suga, and Seki¹⁸⁵ have made C_p measurements on $[Cr_3O(CH_3COO)_6(H_2O)_3]Cl·6H_2O(c)$ from 1.5 to 280 K. Sorai and Seki¹⁸⁶ have made C_p measurements from 1.4 to 200 K on $[Cr_4(OH)_6(en)_6](SO_4)_3 \cdot 1OH_2O(c)$.

Andrews, Westrum, and Bjerrum¹⁸⁷ have determined C_p from *5* to 350 **K** and vapor pressures over a range of temperature for Cr(C₆H₆)₂. They have calculated S^o values and the thermodynamics of vaporization.

Hill and Irving¹⁸⁸ have made solution calorimetric measurements leading to ΔH_f° of tris(acetylacetonato)chromium-(III). Melia and Merrifield¹⁸⁹ have made *C*_{*o*} measurements on this compound from 80 to 300 **K** and also evaluated the enthalpy of vaporization. Fontaine, Pommier, and Guiochon¹⁹⁰ have reported enthalpies of vaporization of this compound and some derivative compounds.

Ill. Molybdenum and Tungsten

A. Descriptive Chemistry

Compounds and ions containing molybdenum or tungsten in oxidation states ranging from -2 to *+6* are known. In general, compounds and ions containing Mo(VI) or W(VI) are more stable (weaker oxidizing agents) than corresponding Cr(VI) species. There is a much greater tendency for Mo(V1) and W(VI) toward formation of polynuclear species than there is for Cr(VI) for which such reactions ordinarily stop at dichromate. Similarly, the important species of lower oxidation states of molybdenum and tungsten are often more complex than those of chromium in the same oxidation state. In contrast to Cr(lll), there are relatively few stable complexes of Mo(lll) and W(III).

Cotton and Wilkinson²⁰ have recently summarized several aspects of the chemistry of molybdenum and tungsten, with particular emphasis on structures of various compounds and ions. Here we will focus on identification of aqueous species and qualitative statements about stabilities that will furnish background appropriate to further discussion of thermodynamic and electrochemical equilibria involving aqueous solutions.

Most molybdenum is obtained from molybdenite, $MoS₂$, although some **is** obtained from various molybdates. Tungsten is found in nature chiefly as tungstates of iron, calcium, and a few other metals.

The oxides $MoO₃$ and $WO₃$ react at high temperatures with various metal oxides to form corresponding molybdates and tungstates. Both oxides dissolve (WO $_3$ only slowly at room temperature) in aqueous alkali to yield aqueous molybdate and tungstate ions represented by $MoO₄²$ (aq) and WO_4^2 ⁻(aq). These ions have been shown to be tetrahedral (slightly distorted in some compounds) in the solid state²⁰ and also in aqueous solution.¹⁹¹ Normal solid molybdates and tungstates can be crystallized from neutral or alkaline solutions. Molybdates and tungstates of the alkali metals and ammonium ion are quite soluble in water, while those of most other metals are only slightly soluble.

The solid isopoly compounds that may be obtained from acidified solutions of molybdates and tungstates are varied and complicated. Structures of several have been determined.20 Examples of isopoly ions that are well characterized in the solid state are the "paramolybdate" $Mo₇O₂₄⁶⁻$ and the "octamolybdate" $Mo_{8}O_{26}^{4-}.$

When alkaline solutions containing $M_0O_4^{2-}$ (aq) or $WO₄^{2–}(aq)$ are acidified under such conditions that no precipitate forms, various condensation reactions take place to yield species that are still inadequately characterized after a large number of investigations employing a variety of experimental methods. Among the aqueous isopoly species that have been postulated are $Mo₃O₁₁⁴⁻, HMo₃O₁₁³⁻, Mo₄O₁₃²⁻,$ $H_0M_0^6O_{20}^{-4+n}$, $H_0M_0^6O_{21}^{-6+n}$, various ions related to paramolybdate and octamolybdate above, and still larger ions involving 12 and 24 Mo with various numbers of hydrogen and oxygen atoms per ion. Because of uncertain identifications of the various aqueous species and the absence of activity coefficients for these highly charged ions, all numerical values of equilibrium "constants" or "quotients" involving isopoly species are open to question.

Acidification of molybdate or tungstate solutions can also lead to precipitation of MO_{3} . $nH_{2}O$ compounds that are commonly called molybdic acid and tungstic acid.

Heteropoly ions and solids are obtained when molybdate and tungstate solutions that also contain other oxo ions (such as PO_4^{3-}) or certain metal ions are acidified. The acids and most salts of heteropoly anions are quite soluble in water and also in many polar organic solvents. Structures and formulas of a number of heteropoly anions have been reviewed by Cotton and Wilkinson.²⁰ Results of some structural studies have proven useful in connection with studies of aqueous solutions cited later.

Connor and Ebsworth¹⁹ have reviewed the chemistry of peroxy compounds of molybdenum and tungsten, all apparently derived from the **+6** oxidation state. Salts prepared by action of excess H_2O_2 on normal molybdates appear to contain four peroxy groups per atom of molybdenum. It seems likely that the $Mo(O₂)₄²⁻$ ion exists in the solid state and that either this ion or **its** hydrolysis products exist in aqueous sohtions. Many compounds containing fewer than four peroxy groups per Mo (or W) have been reported.

The sulfides $MoS₃$ and $WS₃$, various thiomolybdates, and thiotungstates can be precipitated from aqueous solutions. Although these compounds are important in analytical chem-

istry, solid state science, and heterogeneous catalysis, we have few quantitative data to cite later in this review.

There are several hexahalides and oxyhalides of formulas MX_6 , MOX₄, and MO₂X₂. There is also the volatile compound that has been described as $MoO₃·2HCl$ or $MoO₂Cl₂·H₂O$ or (probably most realistically) $MoO(OH)₂Cl₂$.

Reduction of Mo(VI) and W(VI) compounds or aqueous ions can lead to a large number of compounds or aqueous species, many of which have been described by Cotton and Wilkinson.20 We shall later cite thermodynamic data for some of these compounds (especially binary compounds with oxygen, sulfur, and halogens) and also potentials that relate various aqueous species.

High-temperature reduction of alkali metal tungstates with hydrogen or reaction of alkali metals with $WO₃$ leads to "tungsten bronzes" that have semimetallic properties. These substances are mostly unreactive toward water and aqueous solutions, but some are readily oxidized by $Ag⁺(aq)$ and other oxidizing agents in acidic solution and by O_2 in alkaline solution. Similar "bronzes" of molybdenum and other metals are less well known, but do exist.

The interest in complexes formed between Mo(VI) [also W(Vl)] and organic ligands is partly due to the fact that molybdenum is an essential element in various biological systems. Of particular interest is the role of molybdenum in the fixation of nitrogen by some bacteria commonly associated with legumes. Cotton and Wilkinson²⁰ have provided a useful introduction with leading references to this important subject.

B. Molybdenum, Molybdenum Oxides, and Molybdic Acid

As for chromium, the best general source of thermodynamic data for molybdenum and its compounds and ions is NBS 270-4. From this source we have $\Delta H_f^{\circ} = 0$, $\Delta G_f^{\circ} = 0$, and $S^{\circ} = 6.85$ cal K^{-1} mol⁻¹ for Mo(c) as listed in our Table IV. This entropy is in good agreement with the value derived by Kelley and King²² from C_p data and is in still better agreement with the value in the JANAF tables¹⁵¹ calculated from the same experimental results.

For Mo(g) we have S° = 43.461 cal K⁻¹ mol⁻¹ in NBS 270-4, a value in good agreement with earlier statistical calculations.^{22,151} The ΔH_f° = 157.3 kcal mol⁻¹ in NBS 270-4 for $Mo(g)$ is the same as the value in the JANAF tables, 151 based on high temperature vapor pressure data. This value, which we adopt for our Table IV, is also in satisfactory agreement with the more recent results of Koch and Anable.¹⁹² Combination of ΔH_f° and *S*^o leads to the tabulated ΔG_f° = 146.4 kcal mol⁻¹ for Mo(g).

Earlier investigations of the high-temperature thermodynamic properties of Mo(c) and Mo(liq) have been reviewed in the JANAF tables.¹⁵¹ Here we call attention to four recent investigations¹⁹³ of C_p , $(H^{\circ}T - H^{\circ}{}_{298})$, and related thermodynamic properties up to nearly 3000 K.

Now we consider the oxides of molybdenum, progressing from MoO to MoO₃.

The NBS 270-4 lists $\Delta H_f^{\circ} = 101$ kcal mol⁻¹ for MoO(g). Our calculations with the results of DeMaria et al.¹⁹⁴ are in agreement with those summarized in the JANAF tables,¹⁵¹ leading to our adopted $\Delta H_f^{\circ} \simeq 93$ kcal mol⁻¹ as listed in Table IV. The uncertainty in this value is large enough to overlap the value listed in NBS 270-4. We take $S^{\circ} = (57)$ cal K⁻¹ mol⁻¹ from the JANAF tables¹⁵¹ and calculate $\Delta G_f^{\circ} \simeq$ 85 kcal mol⁻¹ for MoO(g).

Combustion calorimetry measurements by Staskiewicz, Tucker, and Snyder¹⁹⁵ and also by Mah¹⁹⁶ have led to ΔH_f° $=$ -140.86 and -140.64 kcal mol⁻¹ for MoO₂(c). We adopt a mean value, $\Delta H_f^{\circ} = -140.76$ kcal mol⁻¹, which is also the value listed in NBS 270-4. The JANAF tables¹⁵¹ list ΔH_f°

 $=$ -140.5 kcal mol⁻¹, based on these results^{195,196} and others that we consider to have sufficiently large uncertainties that it is now better to adopt $\Delta H_f^{\circ} = -140.76$ kcal mol⁻¹ as given above. We also note that some recent high-temperature emf results¹⁹⁷ lead to a calculated $\Delta H_f^{\circ} = -139.6$ kcal mol^{-1} for this compound.

We adopt $S^{\circ} = 11.06$ cal K⁻¹ mol⁻¹ for MoO₂(c) as listed in NBS 270-4 and also by Kelley and King,²² based on C_p values down to 50 K and an extrapolation to absolute zero. It has been pointed out¹⁵¹ that there is a possibility of "extra" entropy that might justify a higher value of $S^{\circ} = 11.95$ cal K^{-1} mol⁻¹ for MoO₂(c). In the absence of needed C_p measurements at $T \le 50$ K, we continue to use the first S° cited above.

The NBS 270-4 lists $\Delta H_f^{\circ} = 3$ kcal mol⁻¹ for MoO₂(g), which is consistent with the results of two investigations.^{194,198} We also adopt $S^{\circ} = (66)$ cal K⁻¹ mol⁻¹ from the JANAF tables¹⁵¹ and calculate $\Delta G_f^{\circ} \simeq 0$ kcal mol⁻¹ for MoO₂(a).

Syntheses, heat capacities, and emf results have been reported¹⁹⁹ for solids with compositions MoO_n (2 \lt n \lt 3).

Combustion calorimetry measurements by Staskiewicz, Tucker, and Snyder¹⁹⁵ and by Mah¹⁹⁶ have led to ΔH_f° = -178.01 and -178.16 kcal mol⁻¹ for MoO₃(c). We adopt the mean value, $\Delta H_f^{\circ} = -178.08$ kcal mol⁻¹, which has also been adopted in NBS 270-4. Heat capacity measurements cited by Kelley and King²² lead to S° = 18.58 cal K⁻¹ mol⁻¹ and thence by combination with the ΔH_f° to ΔG_f° = -159.66 kcal mol⁻¹ as also listed in NBS 270-4. Some hightemperature properties of $MoO₃(c)$ and $MoO₃(liq)$ have been reported.^{199,200}

We note that Kirshenbaum and Beardell²⁰¹ have made DTA measurements leading to *AH* values for various reactions involving $MoO₂$, Mo $O₃$, and Mo with other metals and their oxides. These reported *AH* values are in generally poor agreement with values calculated from ΔH_t° values. The calculated quantities appear to be preferable.

Several investigators^{194, 198,202-204} have made high-temperature measurements leading to data for $(M_0O_3)_n(g)$ species. On the basis of their results, we adopt the uncertain thermodynamic properties listed in Table IV.

The NBS 270-4 has listed $\Delta H_f^{\circ} = -250.0$ kcal mol⁻¹ for H₂MoO₄(c), which is sometimes called "molybdic acid" and has also been represented as $MoO₃·H₂O(c)$. This value, which we adopt, is exactly consistent with the calorimetric results of Graham and Hepler.²⁰⁵ We estimate $S^{\circ} = (29)$ cal K⁻¹ mol⁻¹ and combine with the ΔH_f° to obtain ΔG_f° = -218.1 kcal mol⁻¹ for H₂MoO₄(c). This free energy is consistent with the experience that $H_2MOQ_4(c)$ is stable with respect to $MoO₃(c)$ and $H₂O(liq)$ near 298 K. We also use the ΔG_f° to calculate that the equilibrium vapor pressure of H₂O(g) over H₂MoO₄(c) and MoO₃(c) is \sim 1 mmHg. In the absence²⁰⁵ of reliable vapor pressure data, all we can say is that this calculated value seems "reasonable".

As previously discussed,²⁰⁵ the results of Pechard and of Hüttig and Kurre, who may have worked with "MoO₃.2H₂O" or "H₂MoO₄ \cdot H₂O", are not sufficiently reliable to justify tabulating properties for this substance.

The NBS 270-4 lists $\Delta H_i^{\circ} = -212$ kcal mol⁻¹ for H₂MoO₄(g), while the JANAF tables¹⁵¹ list $\Delta H_f^{\circ} = -203.4$ kcal mol⁻¹. Our assessment of the experimental results (cited in the JANAF tables¹⁵¹) leads us to adopt ΔH_f° = -203 kcal mol⁻¹ and combine with an estimated¹⁵¹ S° = (85) cal K⁻¹ mol⁻¹ to obtain $\Delta G_f^{\circ} = -188$ kcal mol⁻¹ for $H₂MoO₄(g)$.

C. $MoO₄²-(aq)$ and Molybdates

Calorimetric measurements of the enthalpy of reaction of

 $MoO₃(c)$ with excess $OH⁻(aq)$ by Graham and Hepler²⁰⁵ and by O'Hare and Hoekstra²⁰⁶ both lead to $\Delta H_f^{\circ} = -238.3$ kcal mol⁻¹ for MoO₄²⁻(aq). This value, which we adopt for our Table IV, is in good agreement with earlier results of O'Hare and Hoekstra²⁰⁷ and is 0.2 kcal mol⁻¹ less negative than the value listed in NBS 270-4.

The NBS 270-4 lists $\Delta G_f^{\circ} = -199.0$ kcal mol⁻¹ and $S^{\circ} =$ 6.5 cal K^{-1} mol⁻¹ for MoO₄²⁻(aq). Hepler²⁰⁸ has calculated $\Delta G_f^{\circ} = -200.9$ kcal mol⁻¹ and $S^{\circ} = 11 \pm 2$ cal K⁻¹ mol⁻¹ for this ion. Most recently, O'Hare, Jensen, and Hoekstra²⁰⁹ have selected $\Delta G_f^{\circ} = -200.0 \pm 0.3$ kcal mol⁻¹ for $MoO₄²$ ⁻(aq), which corresponds to $S^o = 7.6$ cal K⁻¹ mol⁻¹. We adopt $\Delta G_f^{\circ} = -200.4$ kcal mol⁻¹ and $S^{\circ} = 9$ cal K⁻¹ mol^{-1} for MoO_4^2 ⁻(aq) on the basis of our new calculations that are described below in connection with various molybdates. This adopted ΔG_f° corresponds to the following potential:

$$
MO_4^2
$$
⁻(aq) + 4H₂O(liq) + 6e⁻ = Mo(c) + 8OH⁻(aq)
 E° = -0.913 V

The NBS 270-6 lists S° = 29.3 cal K⁻¹ mol⁻¹ for Ca- $MoO₄(c)$, as calculated by Weller and King²¹⁰ from results of their C_p measurements. Calorimetric measurements by Barany²¹¹ have provided a ΔH° of reaction that leads to $\Delta H^{\circ} =$ -369.5 kcal mol⁻¹ for CaMoO₄(c). We emphasize that their "CaMo04(c)" was well-defined crystalline material. Muldrow and Hepler²¹² have made calorimetric measurements leading to the enthalpy of precipitation and thence to $\Delta H_f^{\circ} = -367.3$ kcal mol⁻¹ for material we designate CaMoO₄(ppt). The NBS

270-6 has listed the mean value $\Delta H_f^{\circ} = -368.4$ kcal mol⁻¹ for CaMo04(c), but we believe it is better to regard the crystalline material denoted by (c) and the precipitated material denoted by (ppt) as different substances and therefore list both experimental ΔH_f° values^{211,212} cited above in our Table IV.

Combination of the S° from Weller and King²¹⁰ with the ΔH_f° from Barany²¹¹ leads to $\Delta G_f^{\circ} = -344.0$ kcal mol⁻¹ for CaMoO₄(c), which is the value we adopt for crystalline calcium molybdate. We have no third law entropy for precipitated calcium molybdate, but estimate that is is the same as for CaMoO₄(c) and combine this value with the ΔH_1° from the enthalpy of precipitation²¹² to obtain $\Delta G_f^{\circ} = -341.8$ kcal mol^{-1} for CaMoO₄(ppt).

from older solubility data for calcium molybdate, while O'Hare, Jensen, and Hoekstra²⁰⁹ have cited $K_{\text{so}} = 3.16 \times$ 10^{-9} from more recent work. These K_{sp} values correspond to ΔG° = 10.9 and 11.6 kcal mol⁻¹ for the reaction represented by Graham and Hepler²⁰⁵ have calculated $K_{sp} \simeq 1 \times 10^{-8}$

$$
CaMoO4(solid) = Ca2+(aq) + MoO42-(aq)
$$

in which CaMoO₄(solid) might refer to either CaMoO₄(c) or CaMoO4(ppt). We now describe two extreme calculations. Using the larger K_{sp} and the ΔG_f° for CaMoO₄(c), we obtain $\Delta G_f^{\circ} = -200.8$ kcal mol⁻¹ for MoO₄²⁻(aq) and thence S° = 10.3 cal K^{-1} mol⁻¹ for this ion. Using the smaller $K_{\rm so}$ and the ΔG_f° for CaMoO₄(ppt) leads to $\Delta G_f^{\circ} = -197.9$ kcal mol⁻¹ and $S^{\circ} = 0.5$ cal K^{-1} mol⁻¹ for MoO₄²⁻(aq). Other combinations lead to ΔG_f° and S° values intermediate between the values just quoted here.

The more negative ΔG_f° and more positive S° values above are most nearly consistent with other values we report below.

O'Hare213 has made calorimetric measurements leading to the enthalpy of precipitation of barium molybdate, with considerable attention paid to experimental conditions in an effort to make the resulting $\Delta H_f^{\circ} = -369.4$ kcal mol⁻¹ apply to BaMoO₄(c). O'Hare²¹³ has cited $S^{\circ} = 34.5 \pm 1.5$ cal K⁻¹ mol⁻¹ for this substance and we calculate its ΔG_f° = -344.0 kcal mol⁻¹. O'Hare²¹³ has also cited two older (1891 and 1953) investigations that are in good agreement with $K_{\rm{sp}}$ $= 3.6 \times 10^{-8}$ for barium molybdate. More recent measurements by Jost²¹⁴ lead to $K_{\text{sp}} = 3.16 \times 10^{-9}$. These K_{sp} values correspond to $\Delta G^{\circ} = 10.15$ and 11.5₉ kcal mol⁻¹ for the solution reaction. The larger K_{sb} in combination with the ΔG_f° of BaMoO₄(c) above leads to $\Delta G_f^{\circ} = -199.8$ kcal mol⁻¹ and S° = 7.0 cal K⁻¹ mol⁻¹ for MoO₄²⁻(aq), while the smaller K_{sp} leads to $\Delta G_f^{\circ} = -198.4$ kcal mol⁻¹ and $S^{\circ} =$ 2.3 cal K^{-1} mol⁻¹ for this ion. If, by analogy with calcium molybdate, we assume that the ΔH_f° and ΔG_f° values for "truly crystalline" barium molybdate are more negative than the corresponding values for the precipitated substance, then we obtain a more negative ΔG_f° and a more postive S° for $MoO₄²–(aq).$

Graham and Hepler²⁰⁵ and Koehler, Pankratz, and Barany215 have made calorimetric measurements that have led to reported values for ΔH_f° of Na₂MoO₄(c) in good agreement with each other. Recalculation of their^{205,215} results in terms of the NBS **270-3** auxiliary data and properties already cited in this review leads us now to $\Delta H_f^{\circ} = -350.8$ kcal mol⁻¹ for Na₂MoO₄(c). We combine this value with S° = 38.1 cal K^{-1} mol⁻¹ for Na₂MoO₄(c) from Weller and King²¹⁰ to obtain $\Delta G_f^{\circ} = -323.6$ kcal mol⁻¹ for this compound. Zhidikova et al. 2^{16} have determined the activity of sodium molybdate and water in saturated solution in equilibrium with $Na₂MoO₄·2H₂O(c)$, and also the vapor pressure of $H₂O(g)$ in equilibrium with Na₂MoO₄(c) and Na₂MoO₄-2H₂O(c). Combination of all these results with the ΔG_f° above for Na₂-MoO₄(c) leads to $\Delta G_f^{\circ} = -437.3$ kcal mol⁻¹ for Na₂MoO₄. $2H_2O(c)$, to $\Delta G_f^{\circ} = -200.0$ kcal mol⁻¹ for MoO₄²⁻(aq), and to $S^{\circ} = 7.8$ cal K^{-1} mol⁻¹ for this ion.

Consideration of uncertainties associated with the various $\Delta G_{\text{f}}^{\text{o}}$ and S^{o} values for MoO₄²⁻(aq) has led us to the "best" values cited earlier in this section and listed in our Table IV. Our ΔG_f° value is slightly more negative than the values listed in NBS **270-4** and calculated by O'Hare, Jensen, and Hoekstra.²⁰⁹ Our S° is correspondingly larger than their values. We note that the second path cited by O'Hare, Jensen, and Hoekstra209 (their Table *5)* is partly based on an estimated entropy, that their fourth path involving $Aq_2MOQ_4(c)$ is itself based on a prior selection of ΔG_f° of MoO₄²⁻(aq), and that the uncertainty in their fifth path is sufficient to make it agree with all the values that have been cited.

For Li₂MoO₄(c) we adopt $\Delta H_f^{\circ} = -363.3$ kcal mol⁻¹ from the calorimetric results of O'Hare, Jensen, and Hoekstra²⁰⁹ and the properties of LiOH(aq) cited by O'Hare et al.²⁰⁹ We agree with their²⁰⁹ conclusion that the results of an earlier investigation are erroneous. Combination of an estimated²⁰⁹ S° = (31) cal K⁻¹ mol⁻¹ with this $\Delta H_{\text{f}}^{\circ}$ leads to $\Delta G_{\text{f}}^{\circ}$ = -337.1 kcal mol⁻¹ for Li₂MoO₄(c).

Yamdagni, Pupp, and Porter²¹⁷ have made high-temperature mass spectral investigations of the dissociation of Li₂-MoO₄(g) and have calculated its $\Delta H_f^{\circ} \simeq -244$ kcal mol⁻¹. They have also determined the ΔH° of vaporization of Li₂MoO₄(liq), but absence of $(H_T - H_{298})$ data for the Li₂- $MoO_A(c$ and lig) prevents us from using this result with the above ΔH_f° of Li₂MoO₄(c) to obtain another value of ΔH_i° for $Li₂MOO₄(q)$.

We have already cited data for $Na₂MoO₄(c)$ and $Na₂MoO₄$. $2H_2O(c)$ in connection with the properties of MoO₄²⁻(aq). Here we note that there have also been high-temperature investigations²¹⁸ of $Na₂MoO₄–MoO₃$ mixtures.

Recalculation (using the most recent auxiliary data) of the calorimetric results of Koehler, Pankratz, and Barany²¹⁵ leads to ΔH_f° = -536.6 kcal mol⁻¹ for Na₂Mo₂O₇(c). We take S° = 59.9 cal K⁻¹ mol⁻¹ from Weller and Kelley^{218a} and calculate $\Delta G_f^{\circ} = -492.0$ kcal mol⁻¹ for Na₂Mo₂O₇(c).

The calorimetric results of Nelson, Moss, and Hepler²¹⁹ lead to $\Delta H_f^{\circ} = -358.0$ kcal mol⁻¹ for K₂MoO₄(c). O'Hare et al ²⁰⁹ have estimated $S^{\circ} = (45)$ cal K⁻¹ mol⁻¹, which leads to $\Delta G_f^{\circ} = -331.0$ kcal mol⁻¹ for K₂MoO₄(c). High-temperature measurements by Farber and Srivastava²²⁰ have provided ΔH° values that lead us to $\Delta H_f^{\circ} = -272$ kcal mol⁻¹ for $K_2MOO_4(q)$ and $\Delta H_f^{\circ} = -242$ kcal mol⁻¹ for KHMoO₄(g).

Recent calorimetric measurements by O'Hare and Hoekstra²⁰⁶ in combination with properties of RbOH(aq) cited by these authors lead to ΔH_f° = -357.0 kcal mol⁻¹ for $Rb_2MOQ_4(c)$. Combination of the estimated²⁰⁶ $S^{\circ} = (56)$ cal K^{-1} mol⁻¹ with this ΔH_f° leads to $\Delta G_f^{\circ} = -331.5$ kcal mol⁻¹ for $Rb_2MoO₄(c)$.

Calorimetric measurements by O'Hare and Hoekstra²⁰⁷ in combination with properties of CsOH(aq) cited by them lead to ΔH_f° = -362.0 kcal mol⁻¹ for Cs₂MoO₄(c). We also have S° = 59.35 cal K⁻¹ mol⁻¹ for Cs₂MoO₄(c) from the heat capacity measurements of Osborne, Flotow, and Hoekstra.²²¹ The ΔH_f° and S^o above lead to $\Delta G_f^{\circ} = -336.3$ kcal mol⁻¹ for this compound.

The enthalpy of sublimation of $Cs₂MoO₄(c)$ cited by O'Hare et al.²⁰⁹ leads to $\Delta H_f^{\circ} = -293$ kcal mol⁻¹ for Cs₂MoO₄(g).

Old measurements cited in NBS Circular *50073* lead to $\Delta H_f^{\circ} \simeq -330$ kcal mol⁻¹ for BeMoO₄(c).

Calorimetric results from Barany²¹¹ lead us to ΔH_f° = $-334.8₂$ kcal mol⁻¹ for MgMoO₄(c), in agreement with the value in NBS 270-6. The $S^{\circ} = 28.4$ cal K^{-1} mol⁻¹ for this compound that is listed in NBS **270-6** is the same as the value calculated by Weller and King²¹⁰ from their C_p results.

The derived $\Delta G_f^{\circ} = -309.7_0$ kcal mol⁻¹ is also consistent with the NBS 270-6.

The NBS 270-6 lists ΔH_1° (at 0 K) = -224 kcal mol⁻¹ for $MgMoO₄(g)$. This value is within the limits set by investigations of two reactions by Verhaegen et a1.222

We have already discussed properties of $CaMoO₄(c)$ and CaMoO₄(ppt) in connection with MoO₄²⁻(aq). The NBS 270-6 lists ΔH_f° (at 0 K) = -197 kcal mol⁻¹ for CaMoO₄(g). This value is consistent with the experimental results of Verhaegen et al.²²² and the NBS 270-4 ΔH_f° of MoO₃(g), but use of the ΔH_f° we have adopted for MoO₃(g) leads to our ΔH_f° = -225 kcal mol⁻¹ for CaMoO₄(g).

O'Hare et al.²⁰⁹ have quoted K_{sp} = 2.58 \times 10⁻⁷ for SrMoO₄(c). We use this K_{sp} with our ΔG_f° of MoO₄²⁻(aq) to calculate $\Delta G_f^{\circ} = -343.$, kcal mol⁻¹ for SrMoO₄(c). Combination of this value with $S^{\circ} = (32)$ cal K⁻¹ mol⁻¹ leads to ΔH_f° = -369 kcal mol⁻¹ for this compound. The NBS 270-6 has listed $\Delta H_f^{\circ} = -370$ kcal mol⁻¹ for SrMoO₄(c), taken from a source that is unknown to us.

The NBS 270-6 lists $\Delta H_f^{\circ} = -235$ kcal mol⁻¹ for $SrMoO₄(a)$, which is intermediate between values calculated from results of two investigations by Verhaegen et al. 222 in combination with the NBS 270-4 ΔH_f° of MoO₃(g). A similar calculation with our ΔH_f° for MoO₃(g) leads to better agreement between the different reactions and thence to $\Delta H_f^{\circ} \simeq$ -249 kcal mol⁻¹ for SrMoO₄(g) as listed in our Table IV.

We have already discussed $BaMoO₄(c)$ in connection with $MoO₄^{2–}(aq)$. Results of Pupp, Yamdagni, and Porter²²³ lead to $\Delta H_f^{\circ} \simeq -242$ kcal mol⁻¹ for BaMoO₄(g).

The NBS 270-4 lists ΔH_1° = -225 kcal mol⁻¹ for Cu-M004(C), apparently based on results of Tammann and Westerhold previously cited in NBS Circular 500^{73} and by Bichowsky and Rossini.⁴⁵ Our interpretation of these uncertain results leads to $\Delta H_f^{\circ} = -242$ kcal mol⁻¹, which is close to the value listed by Bichowsky and Rossini.⁴⁵ We omit this uncertain value from our Table IV.

Results²²⁴ of a calorimetric determination of the enthalpy of precipitation and of solubilities at several temperatures are all in accord with ΔH_i° = -200.6 kcal mol⁻¹ for Ag₂-MoO₄(c). Taking $K_{\text{so}} = 2.2 \times 10^{-12}$ from the investigations cited above²²⁴ and another cited by O'Hare et al.²⁰⁹ leads to ΔG_f° = -179.4 kcal mol⁻¹ for Ag₂MoO₄(c) and thence by combination with the ΔH_f° to $S^{\circ} = 54.2$ cal K⁻¹ mol⁻¹ for this compound, whereas $S^{\circ} = 51$ cal K⁻¹ mol⁻¹ is given in NBS 270-4. A third law entropy based on C_o measurements is needed.

We use the ΔG_f° above to calculate the potential:

$$
Ag_2MoO_4(c) + 2e^- = 2Ag(c) + MoO_4^{2-}(aq)
$$

$$
E^{\circ} = 0.455 \text{ V}
$$

Gaultier and Pannetier⁷⁹ have made DTA measurements leading to data for phase transitions in $Tl_2MoO_4(c)$ and have also made solubility measurements that lead to $K_{\rm so} = 1 \times$ 10^{-8} from which we calculate $\Delta G_f^{\circ} = -226.8$ kcal mol⁻¹ for this compound.

We calculate $\Delta H_f^{\circ} = -284.7_6$ kcal mol⁻¹ for MnMoO₄(c) from the calorimetric results of Barany.²²⁵ This value, which we adopt, is nearly identical with the value listed in NBS 270-4. The recent results of Ziolkowski and Courtine²²⁶ are in fair agreement with this value.

The NBS 270-4 has listed S° = 30.9 cal K⁻¹ mol⁻¹ for Fe- $MoO₄(c)$, which is the same as the value reported by Weller²²⁷ on the basis of C_p measurements. The NBS 270-4 has also listed $\Delta H_f^{\circ} = -257$ kcal mol⁻¹ for this compound, apparently based on the results of Tammann and Westerhold cited in NBS Circular 500.⁷³ Combination of ΔH_1° and S^o gives the ΔG_f° . The NBS 270-4 has listed $\Delta H_f^{\circ} = -702$ kcal mol⁻¹ for Fe₂(MoO₄)₃(c), also apparently based on the results of Tammann and Westerhold mentioned above. We consider

this value to be quite uncertain and do not list it in our Table IV.

For PbMoO₄(c) the NBS 270-4 lists $S^{\circ} = 39.7$ cal K⁻¹ mol^{-1} , which is the same as the third law value found by Weller and Kelley.²²⁸ As pointed out by O'Hare et al., ²⁰⁹ the ΔG_f° in NBS 270-4 corresponds to a K_{sp} for PbMoO₄(c) smaller than any published value they (or we) know of. The $K_{\rm{sp}}$ = 3.3 \times 10⁻¹² cited by O'Hare et al.²⁰⁹ leads to $\Delta G_{\rm{e}}$ ^o = -221.9 kcal mol⁻¹ for PbMoO₄(c). Combination of this ΔG_f° with the *S*^o leads to $\Delta H_f^{\circ} = -246$ kcal mol⁻¹ for PbMoO₄(c). This value differs considerably from ΔH_f° = -251.4 kcal mol⁻¹ listed in NBS 270-4 and $\Delta H_f^{\circ} = -250.9$ kcal mol^{-1} calculated from the calorimetric enthalpy of precipitation reported by Muldrow and Hepler.212 Because of the uncertainties as to which $\Delta H_{\text{f}}^{\circ}$ and $\Delta G_{\text{f}}^{\circ}$ values are best, we list only the entropy of lead molybdate.

Giauque et al.²²⁹ have investigated magnetic and thermodynamic properties of $Gd_2(M_0Q_4)_3(c)$ at low temperatures.

It has long been known that acidification of solutions containing molybdate ions results in various complicated reactions involving polynuclear species that are commonly called isopolymolybdates. On the basis of many investigations cited by Sillen,^{75,112} it now appears certain that the principal species in weakly acidic solutions are heptamolybdates and octamolybdates, whereas in strongly acidic solutions there are depolymerization reactions leading to various cationic species. In addition to the summaries of results tabulated by Sillén, $75,112$ we call attention to a review by Souchay²³⁰ and a few recent investigations cited below.

Two recent spectroscopic investigations²³¹ and one very thorough kinetic investigation²³² are in general agreement with the statement above that the principal isopolymolybdate species in dilute acid are the heptamolybdate and octamolybdate ions that are commonly represented by $Mo₇O₂₄^{6–}(aq)$ and $Mo₈O₂₆^{4–}(aq)$, and also protonated forms related to these species.

We also have four calorimetric investigations²³³ of the formation of isopolymolybdates from molybdate ion or of the formation of molybdate from isopolymolybdates.

It is only for the heptamolybdate ion $Mo₇O₂₄⁶⁻(aa)$ that equilibrium and calorimetric results of different investigations are in general agreement. We therefore limit our listings in Table IV to this ion.

Further acidification of solutions containing heptamolybdate and octamolybdate ions leads to depolymerization reactions and formation of cationic species. Reactions and equilibrium constants that refer to concentrated solutions have been summarized by Sillen^{75,112} and also recently investigated by Krumenacker,²³⁴ whose results are interpreted in terms of equilibrium constants for reactions involving such species as HM_0^3 ⁺(aq), $H_2MO_6^{2+}$ (aq), etc.

Many heteropolymolybdates have been investigated and more or less well characterized. Some examples are H_3 CrMo₆O₂₁, H₈CeMo₁₂O₄₂, H₃PMo₁₂O₄₀, and various related salts. Sillen^{75,112} has cited a number of determinations of solubility products and acid ionization constants **for** heteropolymolybdates. We call attention to recent polarographic investigations²³⁵ of oxidation-reduction properties and also determinations of acid ionization constants.²³⁶ Jespersen²³³ has made calorimetric measurements on $H_3PMo_{12}O_{40}(aq)$.

D. Halides and Oxyhalides of Molybdenum

Heat capacity and entropy of vaporization data from Osborne et al.²³⁷ lead to S° = 62.06 cal K⁻¹ mol⁻¹ for MoF₆-(liq) and $S^{\circ} = 83.75$ cal K⁻¹ mol⁻¹ for MoF₆(g), both at 298 K. These are the values listed in NBS 270-4 and adopted for our Table IV. This S° of MoF₆(g) agrees with the results of a statistical thermodynamic calculation by Weinstock and Goodman.²³⁸ We also call attention to two earlier investigations. Brady et al. 239 have made heat capacity measurements leading to a reported $S^{\circ} = 60.6 \pm 0.7$ cal K⁻¹ mol⁻¹ for $MoF₆(iiq)$, which has been recalculated²³⁷ to be 61.96 cal K^{-1} mol⁻¹. There are also vapor pressure data and derived enthalpy and entropy of vaporization values from Cady and Hargreaves. 240

We adopt $\Delta H_f^{\circ} = -372.29$ kcal mol⁻¹ for MoF₆(g), based on the fluorine combustion calorimetry of Settle, Feder, and Hubbard.²⁴¹ Combination of this value with the enthalpy of vaporization²⁴⁰ leads to ΔH_f° = -378.92 kcal mol⁻¹ for MoF₆(liq). We adopt these ΔH_f° values and combine with the entropies to obtain $\Delta G_f^{\circ} = -351.88$ kcal mol⁻¹ for MoF₆(g) and $\Delta G_f^{\circ} = -352.05$ kcal mol⁻¹ for MoF₆(liq) as listed in Table IV.

We also call attention to some other paths to these enthalpies of formation. Myers and Brady²⁴² have measured the enthalpy of reaction of MoF₆(liq) with excess OH⁻(aq) with results that lead us to $\Delta H_f^{\circ} = -393.2$ kcal mol⁻¹ for MoF₆(liq). More recently, Nuttall, Churney, and Kilday²⁴³ have made similar measurements with results that lead us to ΔH_f° = -376.4 kcal mol⁻¹ for MoF₆(lig). Both of these ΔH_f° values are based on the ΔH_f° of F⁻(aq) from NBS 270-3. Allowing for six times the uncertainty in ΔH_f° of F⁻(aq) (as discussed by Nuttall et al.²⁴³), we see that this latter ΔH_f° for MoF₆(liq) is in reasonable agreement with the value we have adopted from Settle, Feder, and Hubbard, 241 based on direct combination of the elements. It appears that the work of Myers and Brady²⁴² contains substantial errors. We calculate ΔH_f° = -373.8 kcal mol⁻¹ for MoF₆(g) from the results of Burgess, Haigh, and Peacock²⁴⁴ on the reaction of MoF₆(g) with excess alkali, which is in fair agreement with our adopted value.

Burgess et al.²⁴⁴ have made similar experiments with MoF₅(c) and MoOF₄(c), leading to our listed ΔH_f° values for these compounds. The entropy of $MOF₅(g)$ has been calculated by statistical thermodynamics. 245

Paine and McDowell 246 have studied the evaporation of $MoOF₄(c)$ at 25 °C with mass spectrometry and have shown that the vapor contains small amounts of oligomeric species, possibly (MoOF₄)₄(g). Therefore, we cannot calculate a reliable ΔH_f° of MoOF₄(g) from the reported²⁴⁷ heat of sublimation of $MoOF₄(c)$.

Results of Zmbov, Uy, and Margrave²⁴⁸ lead to ΔH_f° = -268 kcal mol⁻¹ for MoO₂F₂(g).

The NBS 270-4 lists thermodynamic properties for $MoO₂Cl₂(c), MoO₂Cl₂(g), MoO₂Cl₂·H₂O(c), and MoOCl₄(c). In$ addition to all of these compounds, we also have thermodynamic data for $MoOCl₂(c)$, $MoOCl₃(c)$, $MoOCl₃(g)$, and MoOC14(g). The thermodynamic properties of these 14 substances are related by way of thermodynamic data for about twice as many reactions. There is no set of thermodynamic properties that is consistent with all of the published results, which shows that at least some of the real uncertainties and errors in thermodynamic data are larger than quoted in the original publications. We have therefore not tried to undertake any purely statistical analysis of the published results in order to obtain a set of thermodynamic properties that leads to a minimum difference between published and calculated reaction thermodynamics. Instead, we have made tentative choices of what appear to be the best experimental results and calculated a few thermodynamic properties that have then been combined in various cycles to obtain still further thermodynamic properties. Recycling and repetition from different starting points have finally led us to the thermodynamic properties that are given in Table IV for the 14 substances listed in the beginning of this paragraph. Rather than describe in detail how we settled on these particular values, we show in following paragraphs how these values are consistent with $MOCl₂(c)$, $MOCl₃(c)$, $MOCl₄(c)$, $MOCl₄(g)$, $MOCl₅(c)$, $MOCl₅(g)$, results of particular measurements, and also how some of them are inconsistent with results of other measurements.

Shchukarev et al.²⁴⁹ have summarized the results of a large number of previous calorimetric measurements. Some of these results lead to $\Delta H_f^{\circ} = -114$ kcal mol⁻¹ for MoCl₄(c) and to $\Delta H_f^{\circ} = -126$ kcal mol⁻¹ for MoCl₅(c), as listed for both of these compounds in Table IV. We note that these ΔH_f° values are based on ΔH_i° for MoO₃(c) and do not involve ΔH_f° values for any other molybdenum halides. The JANAF tables¹⁵¹ cite equilibrium results for the MoCI₅(c)- $MoCl₄(c)-Cl₂(g)$ system that are in good agreement with the ΔH_i° values given above. The enthalpy of vaporization^{151,249}

of oCl₅(c) leads to our tabulated ΔH_f° of MoCl₅(g).
We obtain $\Delta H_f^{\circ} = -92$ kcal mol⁻¹ for MoCl₄(g) from the average of ΔH_f° values from Shchukarev et al.²⁴⁹ and Oppermann and Stöver²⁵⁰ for the decomposition of MoC $13(c)$ to $Mod_{2}(c)$ and $Mod_{4}(g)$. For this calculation we have used the ΔH_f° values for MoCl₂(c) and MoCl₃(c) that are discussed below.

Calorimetric results summarized by Shchukarev et al.²⁴⁹ lead to ΔH_f° = -68 kcal mol⁻¹ for MoCl₂(c). This value is dependent on ΔH_f° of MoO₃(c) and also on the ΔH_f° of $MoO₂Cl₂(c)$, which is discussed below.

For MoCl₃(c) we have taken $\Delta H_f^{\circ} = -96.7$ kcal mol⁻¹ from the calorimetric results of Shchukarev et al.²⁴⁹ and the equilibrium results of Oppermann, Stöver, and Kunze.²⁵¹ Calculation of ΔH_f° of MoCl₃(c) from these equilibrium results²⁵¹ is dependent on ΔH_f° values for various other molybdenum halides and oxyhalides.

There have been three independent investigations²⁵²⁻²⁵⁴ of the enthalpy of reaction of $MoO₂Cl₂(c)$ with excess OH⁻(aq). These results lead to $\Delta H_f^{\circ} = -170.5, -173.2,$ and -175.4 kcal mol⁻¹ for MoO₂Cl₂(c). Because of the troublesome reaction of $MoO₂Cl₂(c)$ with atmospheric water, we expect that the most exothermic enthalpy of reaction is best²⁵² and therefore adopt $\Delta H_f^{\circ} = -170.5$ kcal mol⁻¹ for this compound.

Our tabulated ΔH_f° of MoO₂Cl₂(g) is consistent with the above ΔH_f° for MoO₂Cl₂(c) and the enthalpy of sublimation reported by Oppermann²⁵⁴ and by Shchukarev et al.²⁵⁵ The equilibrium data from Shchukarev et al.²⁵⁵ and from Hultgren and Brewer²⁵⁶ on the reaction between $Mo_{3}(c)$ and $HCl(g)$ to form $MoO₂Cl₂(g)$ and $H₂O(g)$ lead to a slightly less negative ΔH_f° for $MoO_2Cl_2(g)$. All of these results support our choice for ΔH_f° of MoO₂Cl₂(c) in the paragraph above.

Our tabulated $\Delta H_f^{\circ} = -150.7$ kcal mol⁻¹ for MoOCl₃(c) is consistent with the calorimetric results of Oppermann, Stover, and Kunze.²⁵¹ The $\Delta H_f^{\circ} = -123.$, kcal mol⁻¹ for MoOCI₃(g) is based on the above ΔH_f° for MoOCI₃(c) and the enthalpy of sublimation. 251

For MoOCI₄(c) we adopt $\Delta H_f^{\circ} = -157.6$ kcal mol⁻¹ from results of two calorimetric investigations^{249,251} that differ from each other by 6 kcal mol^{-1}. The enthalpy of vaporization that leads to $\Delta H_f^{\circ} = -140.3$ kcal mol⁻¹ for MoOCl₄(g) is from Oppermann et al.²⁵¹

Our $\Delta H_f^{\circ} = -126.2$ kcal mol⁻¹ for MoOCl₂(c) is based on the equilibrium results of Oppermann and Stöver²⁵⁰ for decomposition of $MoOCl₂(c)$ to $MoCl₂(c)$ and $MoO₂Cl₂(g)$.

We also list entropies for the molybdenum halides and oxyhalides. These estimated entropies are intended to be consistent with results of various equilibrium investigations referred to above. Entropies based on measured heat capacities and the third law are needed.

We adopt $\Delta H_f^{\circ} = -245.9$ kcal mol⁻¹ for the compound listed in Table IV as $MoO₂Cl₂·H₂O(c)$, based on a calorimetric measurement of the enthalpy of reaction with excess $OH^{-}(aq).^{252}$ This compound, which is commonly prepared by reaction of MoO₃(c) with HCI(g) at about 250 °C, has also been represented as $MoO(OH)₂Cl₂(c)$ and $MoO₃·2HCl(c)$. We

estimate that the entropy of this compound is 10 cal K^{-1} mol⁻¹ greater than that of $MoO₂Cl₂(c)$ and calculate the ΔG_f° . This ΔG_f° in combination with that of MoO₃(c) leads to a calculated 0.04 atm (at 298 K) for the pressure of HCI(g) in equilibrium with MoO₃.2HCl(c) and MoO₃(c). A similar calculation with the ΔG_f° of MoO₂Cl₂(c) leads to 2 \times 10⁻⁵ atm for the pressure of $H_2O(g)$ in equilibrium with $MoO_2Cl_2·H_2O(c)$ and $MoO₂Cl₂(c)$. Both of these calculated equilibrium pressures are in accord with the properties of these compounds.

Our Table IV lists $\Delta H_f^{\circ} = -51.0$ kcal mol⁻¹ for MoBr₂(c) and $\Delta H_f^{\circ} = -62.7$ kcal mol⁻¹ for MoBr₃(c). A calorimetric determination by Shukurov et al.²⁵⁷ of the heats of combustion of these compounds leads to $\Delta H_i^{\circ} = -54 \pm 5$ kcal mol⁻¹ for MoBr₂(c) and to $\Delta H_f^{\circ} = -64 \pm 5$ kcal mol⁻¹ for $MoBr₃(c)$. Equilibrium data from Oppermann²⁵⁸ lead to ΔH° _{reaction} = 74.₈ kcal for

 $4\text{MoBr}_2(c) = 2\text{MoBr}_3(c) + \text{Br}_2(g) + 2\text{Mo}(c)$

and to ΔH° _{reaction} = 25.₅ kcal for

$$
3\text{MoBr}_2(c) = \text{Mo}(c) + 2\text{MoBr}_3(c)
$$

Our selected values have been chosen to be reasonably consistent with both the calorimetric and the equilibrium data.

Oppermann²⁵⁸ has determined the enthalpy of sublimation of MoBr₂(c), and we have calculated $\Delta H_f^{\circ} = -20.8$ kcal mol⁻¹ for MoBr₂(g) from his data.

The results of two equilibrium studies by Oppermann²⁵⁸ in combination with our adopted values of ΔH_f° for MoBr₂(c) and MoBr₃(c) give ΔH_f° = -36.₇ kcal mol⁻¹ for MoBr₄(g). Shchukarev et al.²⁵⁹ have determined the enthalpies of solukcal mol⁻¹ for MoBr₄(c). This value depends on our adopted ΔH_f° for MoCl₅(c). tion of MoBr₄(c) and MoCl₅(c), leading to our $\Delta H_i^{\circ} = -70.4$

Table IV lists $\Delta H_f^{\circ} = -152_{.3}$ kcal mol⁻¹ for MoO₂Br₂(c), which is the average of two calorimetric determinations,^{254,260} and also ΔH_f° = -126.₄ kcal mol⁻¹ for $MoO₂Br₂(g)$ from the heat of sublimation determined by Oppermann.²⁵⁴ Oppermann et al.²⁶¹ have made similar studies on MoOBr₃(c) and MoOBr₃(g), leading to our $\Delta H_f^{\circ} = -111_{.2}$ kcal mol⁻¹ for MoOBr₃(c) and $\Delta H_f^{\circ} = -75.2$ kcal mol⁻¹ for MoOBr₃(a).

Our estimated entropies for the molybdenum bromides and oxybromides are consistent with the equilibrium measurements of Oppermann et al.^{258,261} The uncertainty in these entropies is considerable (maybe ± 10 cal K⁻¹ mol⁻¹), but the internal consistency of the values is (probably) much better.

The $\Delta H_f^{\circ} = -27.0$ kcal mol⁻¹ for Mol₃(c) has been calculated by Skinner et al.^{262,263} from the heat of reaction bewhich we will discuss later. They also estimate ΔH_i° for Mol₂(c) to be 1.5 kcal mol⁻¹ less negative than ΔH_1° for $Mol₃(c)$. These estimated and measured values are adopted for Table IV. tween Mo(CO)₆(c) and $I_2(g)$ and the ΔH_f° of Mo(CO)₆(c),

NBS 270-4 lists $\Delta H_f^{\circ} = 32$ kcal mol⁻¹ for Mol₂(g), which is consistent with our recalculation of Allen's results²⁶⁴ for the equilibrium between Mo(c), $I(g)$, and Mol₂(g) at 1200 K.

Oppermann²⁶⁵ claims to have shown that $MoO₂l₂(g)$ is formed in the reaction between $MoO₂(c)$ and $I₂(g)$ at about 1000 K, and he has derived the uncertain values of ΔH_f° and S° we have included in Table IV for MoO₂I₂(g).

E. Other Molybdenum Compounds

Barancheeva and Zharkova²⁶⁶ have determined ΔH_f° for calcium molybdite, $CaMoO₃(c)$, by combustion calorimetry. We calculate $\Delta H_f^{\circ} = -280$ kcal mol⁻¹ from the published heat of combustion, using our ΔH_f° for CaMoO₄(c). Earlier high-temperature equilibrium^{266a} and high-temperature emf^{266b} investigations lead to $\Delta H_f^{\circ} = -296$ kcal mol⁻¹ for

 $CaMoO₃(c)$, in agreement with the value listed in NBS 270-6. We accept the latter value.

Our $\Delta H_i^{\circ} = -306$ kcal mol⁻¹ for SrMoO₃(c) is calculated from combustion calorimetry results from Zharkova and Barancheeva, 267 and is the same as the value listed in NBS 270-6.

NBS 270-6 also lists $\Delta H_f^{\circ} = -130$ kcal mol⁻¹ (at 0 K) for $SrMoO₃(g)$, which is the mean of two investigations by Verhaegen et al. 222 calculated with the NBS 270-4 ΔH° for MoO₃(g). With our adopted ΔH_f° for MoO₃(g) we obtain ΔH_f° \simeq -141 kcal mol⁻¹ for SrMoO₃(g) and a better agreement between the two values of ΔH_i° that can be calculated from Verhaegen's results.

For $BaMoO₃(c)$ a calorimetric and a high-temperature equilibrium investigation (discussed by O'Hare²¹³) are in good agreement with $\Delta H_f^{\circ} = -295$ (±2) kcal mol⁻¹, as adopted in NBS 270-6 and in our Table IV.

Our $\Delta H_f^{\circ} \simeq -156$ kcal mol⁻¹ for BaMoO₃(g) is calculated from the high-temperature equilibrium data of Pupp et al. 223 and our adopted ΔH_f° for MoO₂(g).

For MoS₂(c), NBS 270-4 lists $\Delta H_1^{\circ} = -56.2$ kcal mol⁻¹ and S° = 14.96 cal K⁻¹ mol⁻¹. The entropy is from C_p measurements by Westrum and McBride,²⁶⁸ while the ΔH_f^{δ} value is consistent with the results of two old investigations.²⁶⁹ O'Hare et al.270 have made calorimetric measurements that lead to ΔH_f° = -65.8 kcal mol⁻¹. This value, which we adopt, is in reasonable agreement with some high-temperature studies, as discussed by O'Hare et al.²⁷⁰ We agree with the analysis by O'Hare et al.²⁷⁰ of high-temperature equilibrium and emf data for $Mo₂S₃(c)$, leading to an approximate $\Delta H_f^{\circ} \simeq -97$ kcal mol⁻¹ for this compound.

Parravano and Malquori²⁶⁹ have made equilibrium studies on the system $MoS₃-MoS₂-S₂$, but their conclusion regarding the stability of $MoS₃$ is at variance with that of another investigation.²⁷¹ Therefore, we do not list MoS₃(c) in Table IV.

The enthalpy of decomposition of $(NH_A)_{2}MOS_{A}(c)$ is known from equilibrium measurements on its thermal decomposition,²⁷² but the absence of a ΔH_f° value for MoS₃(c) prevents us from calculating a ΔH_f° for $(NH_4)_2MOS_4(c)$.

For the nitride, Mo₂N(c), we have $\Delta H_f^{\circ} = -19.5 \pm 0.3$ kcal mol⁻¹ from combustion calorimetry by Mah.¹⁶⁴ This value is listed in NBS 270-4.

Mah²⁷³ has also determined $\Delta H_t^{\circ} = -2.4$ kcal mol⁻¹ for "MoC" and $\Delta H_f^{\circ} = -10.9$ kcal mol⁻¹ for Mo₂C. As it was not known by Mah that the high-carbon carbide is carbon deficient with an actual composition of MoC_{0.67}, the heat of formation of "MoC" might be considerably in error.²⁷ For $Mo₂C(c)$ we have $S^o = 15.74$ cal $K⁻¹$ mol⁻¹ from C_p measurements.²⁷⁴ Our ΔG_f° in Table IV is consistent with the S° and ΔH_f° values.

High-temperature heat contents²⁷⁴ combined with the adopted ΔH_f° and S° lead to a free energy of formation of $Mo₂C(c)$ which at 800 K is about 1.2 kcal mol⁻¹ more negative than the value calculated by Solbakken and Emmett²⁷⁵ from equilibrium measurements on the reaction of Mo(c) and $CH₄(g)$ to form $Mo₂C(c)$ and $H₂(g)$. We have no explanation for this discrepancy.

We adopt enthalpies of formation and entropies for $Mo₃Si(c)$, $MoSi₂(c)$, and $Mo₅Si₃(c)$ from Chart's recent review.¹⁶⁶ The slightly less negative ΔH_f° values listed in NBS 270-4 for these compounds are within the uncertainty limits assigned by Chart. The tabulated enthalpies and entropies lead to our free energy values.

NBS 270-4 lists $\Delta H_f^{\circ} = -5$ kcal mol⁻¹ for Mo₃Ge(c), consistent with the results of vapor pressure measurements by Peavler and Searcy.²⁷⁶

Potential measurements by EI-Shamy and EI-Aggan²⁷⁷ on the Mo(VI) Mo(V) couple in aqueous HCI lead to $E^{\circ} = 0.48$ V at 30 °C, but the molybdenum species are ill-defined and we

do not try to write a redox equation. Haight 278 has shown that $MoOCl₅²⁻$ is the most important Mo(V) species in concentrated HCI, and that the dinuclear ion $(MoOCl₄)₂O⁴⁻$ is the initial hydrolysis product. Haight 278 has evaluated the equilibrium constants at several temperatures and thence the enthalpy of reaction for this dimerization process. His results are in general agreement with more recent work, in which the formation of dinuclear cationic species in more dilute acid solution has also been demonstrated.²⁷⁹ Saha et al.²⁸⁰ have prepared the acids $H_2MOOCI_5.2H_2O$ and $HMoCl_4$ in the solid state and have also shown that the corresponding bromides have similar properties. Marov et al.²⁸¹ have reported equilibrium constants for the reactions between $MoOX₄⁻ (X = NCS⁻ or Cl⁻)$ and Br $^-$, I $^-$, or H $_3$ PO $_4$ in strongly acidic solutions.

Solution calorimetry by Burgess et al.²⁸² has led to the ΔH_f° values we list in Table IV for KMoF₆(c), RbMoF₆(c), and $CsMoFe(C)$.

The complex formation between $CH₃O⁻$ and Mo(V) in absolute methanol has been investigated by Gut, Schmid, and Serrallach. *²⁸³*

Efimov and Belorukova²⁸⁴ have described the synthesis of Mo(IV) compounds of the type $M_2M_0Cl_6$ (M = Na, K, Rb, or Cs) and evaluated ΔH_f° for the sodium and potassium compounds by solution calorimetry.

The stable complex ion $Mo(CN)a^{4-}$ forms soluble complexes with tervalent metal ions, and the stability constant of the $Fe³⁺$ complex has been estimated.²⁸⁵

Potentials have been reported²⁸⁶ for the half-reaction

 $Mo(CN)₈³⁻ + e^- = Mo(CN)₈⁴⁻$ $E^{\circ} = 0.725$ V but it is necessary to realize that evaluation of activity coefficient and thence of a standard potential is uncertain.

It has been shown that the green solutions of Mo(lll) in HCI contain a mixture of Mo(lll) species.287 Recently, the green dinuclear ion $(H_2O)_4MO(OH)_2MO(H_2O)_4^{4+}$ and the yellow hexaaquo ion $Mo(H₂O)₆³⁺$ have been identified.^{287,288}

We have no quantitative data on Mo(ll) in aqueous solution. The identification of some aqueous Mo(ll) species is discussed in recent papers.289

NBS 270-4 reports $\Delta H_f^{\circ} = -234.9$ kcal mol⁻¹ for $Mo(CO)_{6}(c)$, in accordance with bomb calorimetric results of Cotton, Fischer, and Wilkinson.¹⁷³ More recently, Skinner et al.²⁶² propose $\Delta H_f^{\circ} = -236.5$ kcal mol⁻¹ as a weighted average of their results for the heat of combustion and heat of decomposition of Mo(CO)₆(c). Cotton et al.¹⁷³ report ΔH° _{vaporization} = 16.3 kcal mol⁻¹, while Monchamp and Cotton²⁹⁰ find ΔH° _{vaporization} = 17.3 kcal mol⁻¹. We adopt ΔH° = -219.7 $=$ -219.7 kcal mol⁻¹ for Mo(CO)₆(g), using the average value of the quoted enthalpies of vaporization. From the results of their C_p measurements, Astrov et al.²⁹¹ have calculated S° = 78.17 \pm 0.25 cal K⁻¹ mol⁻¹ for Mo(CO)₆(c). On the basis of the same data, Kelley and King²² give S° = 77.9 \pm 0.8 cal K^{-1} mol⁻¹. We adopt $S^{\circ} = 78.0$ cal K^{-1} mol⁻¹ in Table IV. Monchamp and Cotton²⁹⁰ have discussed earlier spectroscopic investigations on $Mo(CO)_{6}(g)$ and have made statistical calculations on the basis of these spectroscopic data, leading to values of S° for Mo(CO)₆(g) from 117.6 to 122.6 cal K^{-1} mol⁻¹. From the vapor pressure measurements of Monchamp and Cotton²⁹⁰ we calculate and adopt S° = 117.8 cal K^{-1} mol⁻¹ for Mo(CO)₆(g).

There are few thermodynamic investigations on organic molybdenum compounds. In addition to data covered by earlier reviews,^{180,181} we note that the heats of formation of adducts MoCl₄.2L (L = pyridine, tetrahydrofuran, or tetrahydrothiophene) have been determined.292

F. Tungsten, Tungsten Oxides, and Tungstic Acid

We take $\Delta H_f^{\circ} = 0$, $\Delta G_f^{\circ} = 0$, and $S^{\circ} = 7.80$ cal K⁻¹

mol⁻¹ from NBS 270-4 for W(c). The entropy is the same as listed by Kelley and King²² and in the JANAF tables.¹⁵¹

For W(g) we have $S^{\circ} = 41.549$ cal K⁻¹ mol⁻¹, also in agreement with the value given by Kelley and King²² and in NBS 270-4. On the basis of vapor pressure measurements by Plante and Sessoms²⁹³ and earlier results cited by them, we adopt ΔH_f° = 204.₅ kcal mol⁻¹ for W(g). Combination of ΔH_f° and S^o leads to $\Delta G_f^{\circ} = 194.4$ kcal mol⁻¹.

The heat capacity, enthalpy, and related thermodynamic properties of tungsten at high temperatures have been the subject of a recent investigation;²⁹⁴ earlier results are discussed in the JANAF tables.¹⁵¹

For WO(g) we adopt $\Delta H_f^{\circ} \simeq 102$ kcal mol⁻¹ from the work of DeMaria et al.,¹⁹⁴ as also discussed in the JANAF tables.¹⁵¹ The uncertainty in this value overlaps the NBS 270-4 value of $\Delta H_f^{\circ} = 108$ kcal mol⁻¹. We use an estimated¹⁵¹ S^o = (59) cal K⁻¹ mol⁻¹ to calculate $\Delta G_f^{\circ} \simeq 94$ kcal mol⁻¹.

The $\Delta H_f^{\circ} = -140.94$ kcal mol⁻¹ for WO₂(c) given in NBS 270-4 is based on combustion calorimetry by Mah.²⁹⁵ Charlu and Kleppa²⁹⁶ obtained $\Delta H_f^{\circ} = -140.2 \pm 0.7$ kcal mol⁻¹ by this same method. Our recalculations of high-temperature emf results^{197,297} lead to $\Delta H_f^{\circ} = - 139.5$ and -140.4 kcal mol^{-1} , respectively. Earlier equilibrium measurements discussed in the JANAF tables¹⁵¹ lead us to $\Delta H_f^{\circ} = -140.6 \pm$ 0.7 kcal mol^{-1}. We adopt the value from Mah in our Table V. but note that there is some evidence for a slightly less negative value. We adopt $S^{\circ} = 12.08$ cal K⁻¹ mol⁻¹ as given by Kelley and King²² and listed in NBS 270-4, and calculate ΔG_f° = -127.6 kcal mol⁻¹ for WO₂(c).

We have $\Delta H_i^{\circ} \simeq 15$ kcal mol⁻¹ for WO₂(g) as a mean value of third law recalculations of the results from DeMaria et al.¹⁹⁴ and Chupka, Berkowitz, and Giese.²⁹⁸ NBS 270-4 lists ΔH_f° = 11 kcal mol⁻¹. We adopt S° = (68) cal K⁻¹ mol⁻¹ from the JANAF tables¹⁵¹ and thence calculate ΔG_f° $\simeq 12$ kcal mol⁻¹ for WO₂(g).

For WO_{2.72}(c) (= $\frac{1}{18}W_{18}O_{49}$) we adopt $\Delta H_f^{\circ} = -186.3$ kcal mol⁻¹ from two investigations.^{296,297} The analysis of older data in the JANAF tables¹⁵¹ also supports a more negative value than the $\Delta H_f^{\circ} = -185$ kcal mol⁻¹ listed in NBS 270-4. The ΔG_f° value in Table V has been calculated from our ΔH_i° and an estimated¹⁵¹ S° = (16.4) cal K⁻¹ mol⁻¹.

For WO_{2,90}(c) (= $\frac{1}{20}W_{20}O_{58}$) we adopt ΔH_f° = -196.0 kcal mol⁻¹ as listed in NBS 270-4 and in the JANAF tables.¹⁵¹ This value is consistent with two investigations.^{296,297} Table V gives $\Delta G_f^{\circ} = -177.7$ kcal mol⁻¹, calculated from our ΔH_f° and an estimated¹⁵¹ S^o = (17.5) cal K^{-1} mol⁻¹.

Our values for $WO_{2.96}(c)$ are the same as listed in the JANAF tables.¹⁵¹

For WO₃(c) we adopt $\Delta H_f^{\circ} = -201.45$ kcal mol⁻¹ from NBS 270-4, in agreement with bomb calorimetry results of Mah.²⁹⁵ This value also agrees well with $\Delta H_f^{\circ} = -201.84$ kcal mol⁻¹ from an earlier investigation.²⁹⁹ The NBS 270-4 lists S° = 18.14 cal K⁻¹ mol⁻¹, in good agreement with the value given by Kelley and King,²² and thence ΔG_f° = -182.62 kcal mol⁻¹ for WO₃(c).

A third law analysis of high-temperature data from three investigations^{194.298.300} leads to $\Delta H_f^{\circ} \simeq -70$ kcal mol⁻¹ for WO₃(g). Combining this value with an estimated¹⁵¹ $S^{\circ} = (68)$ cal K $^{-1}$ mol $^{-1}$ gives $\Delta G_{\rm f}^{\,\rm o} \simeq -66$ kcal mol $^{-1}$

Our enthalpies of formation for $(WO_3)_n(q)$ ($n = 2, 3, 4$) and for $W_3O_8(q)$ are all based on the high-temperature vapor pressure and mass spectrometric measurements by Ackermann and Rauh.³⁰¹ They have been combined with estimated¹⁵¹ entropies to give ΔG_f° values. The values listed in NBS 270-4 for ΔH_f° of (WO₃)₃(g) and (WO₃)₄(g) are \sim 20 kcal mol⁻¹ less negative than our values and are in better agreement with the results of Norman and Staley,³⁰² whose results are inconsistent with the free energy functions in the JANAF

a Italicized values agree with values in NBS 270-4 or NBS 270-6. Values in parentheses are estimates. ^b Oppermann and Stöver³⁴⁸ have estimated $S^{\circ} = 62 \pm 6$ cal K⁻¹ mol⁻¹ for WOBr₄(c) and $S^{\circ} = 112 \pm 7$ cal K⁻¹ mol⁻¹ for WOBr₄(g). We have adopted their entropy of sublimation of WOBr₄(c), **but** not their entropy values. These seem to be too high, compared with the estimated entropies of other related compounds.

 $tables¹⁵¹$ and have not been adopted here.

The existence of $W_3O(c)$ is contested^{297,303} and we do not include any data reported³⁰³ for $W_3O(c)$ in our Table V.

For the compound $WO_3·H_2O(c)$, sometimes written as $H₂WO₄(c)$, the standard enthalpy of solution in aqueous sodium hydroxide has been determined as -13.7 and -13.2 kcal $mol⁻¹$, respectively.^{304,305} We combine the least exothermic heat of solution³⁰⁵ with our adopted ΔH_f° for WO₄²⁻(aq), which we will discuss later, to obtain $\Delta H_f^{\circ} = -270.0$ kcal mol⁻¹ for WO₃.H₂O(c). We estimate S° = (33) cal K⁻¹

mol⁻¹. With these values, a vapor pressure of $H_2O(g)$ over W03-H20(c) and W03(c) of about **40** mmHg can be calculated. This vapor pressure "should" be of the same order of magnitude as for $MoO_3·H_2O(c)$, \sim 1 mmHg. In the absence of reliable vapor pressure data and third law entropies for MoO₃. H₂O(c) and WO₃.H₂O(c), all we can say is that we suspect minor errors in the thermodynamic data for $WO₄^{2–}(aq)$ and WO₃·H₂O(c). We note that use of the more exothermic enthalpy of solution³⁰⁴ leads to a still higher calculated vapor pressure.

For WO₃.H₂O(g) we adopt $\Delta H_i^{\circ} \simeq -217$ kcal mol⁻¹ from equilibrium measurements by Belton and McCarron.³⁰⁶ This value is in good agreement with the results of Glemser et al.³⁰⁷ The $\Delta H_1^{\circ} = -229$ kcal mol⁻¹ in NBS 270-4 is consistent with the earlier results of Meyer et al.³⁰⁸

G. WO_4^2 ⁻(aq) and Tungstates

The most direct way to determine ΔH_f° of WO₄²⁻(aq) is to measure the enthalpy of solution of $WO₃(c)$ in excess base. This is, however, beset with experimental difficulties. Two different investigations of the enthalpy of solution of $WO_2(c)$ in aqueous sodium hydroxide lead to $\Delta H_f^{\circ} = -257.1$ kcal mol⁻¹ (ref 305), as adopted in NBS 270-4, and to ΔH_f° = -256.5 kcal mol⁻¹ (ref 304), respectively, for WO₄²⁻(aq). For reasons discussed in ref 304, we accept this latter value. We also note that Sherfey and Brenner³⁰⁹ employed electrochemical calorimetry to obtain $\Delta H^{\circ} = -7.5 \pm 1.5$ kcal for the reaction

 $W(c) + 2OH^{-}(aq) + 2H_2O(lia) = WQ_4^{2-}(aq) + 3H_2(q)$

and thence $\Delta H^{\circ} \simeq -253.6$ kcal mol⁻¹ for WO₄²⁻(aq).

Whereas several routes were available to calculate thermodynamic properties of $MoO₄^{2–}(aq)$, similar data for tungstates are comparatively scarce, and we are unable to present any reliable experimental values for ΔG_f° or S° for WO_4^2 ⁻(aq). From $K_{sp} = 1 \times 10^{-8}$ for CaWO₄(c)⁷⁵ and the ΔG_f° for CaWO₄(c) to be discussed later, we calculate ΔG_f° $= -223.5$ kcal mol⁻¹ for WO₄²⁻(aq) and thence $S^{\circ} = 26$ cal K^{-1} mol⁻¹ for this ion. As this seems to be an unreasonably high entropy value, we prefer to estimate $S^{\circ} = (11)$ cal K^{-1} mol⁻¹ and combine with the above ΔH_f° to find ΔG_f° = -219 kcal mol⁻¹ for WO₄²⁻(aq).

An alkaline tungstate solution contains monomeric WO_4^2 ⁻(aq), but on acidification complicated polymerization reactions occur. These reactions are not yet well understood. Equilibrium constants for postulated reactions are to be found in Sillen's compilations;^{75,112} Kepert³¹⁰ has reviewed the literature up to 1961 and some later work has been discussed by Cotton and Wilkinson.²⁰

Two recent investigations^{311,312} are in general agreement on the equilibrium constant for the formation of the "paratungstate A'' ion, HW₆O₂₁⁵⁻(aq), for which the enthalpy of formation is also known.³¹³ However, these investiga $tors^{311,312}$ have come to quite different conclusions regarding other thermodynamic and kinetic characteristics of tungstate solutions, clearly showing that our knowledge of the properties of these solutions is far from complete. We therefore limit our listings in Table V to $HW_6O_{21}^{5-}$ (aq). Stopped-flow kinetic experiments³¹⁴ have shown that $HW_6O_{21}^{5-}(aq)$ is formed rapidly (within \sim 1 s) upon acidification of a tungstate solution and that the intermediate species are not well defined.

Further acidification of solutions containing polytungstate ions leads to depolymerization reactions in which cationic species are formed. Sillen^{75,112} quotes some equilibrium constants for such reactions; Nazarenko and Poluektova 315 have investigated the dissociation constant of tungstic acid in solutions of varying ionic strength.

 $Sillén^{75,112}$ cites an impressive number of determinations of solubility products and ionization constants for various heteropolytungstates. We call attention to recent determinations of reduction potentials, 316 an acid dissociation constant, 317 and heats of solution and neutralization^{318,319} for some heteropolytungstates. Weakley³²⁰ has described the preparation of some polytungstate ions containing two heteroatoms and has also measured some redox potentials and stability constants related to such species.

O'Hare et al.²⁰⁹ cite ΔH_f° = -383.2 kcal mol⁻¹ for

 $Li₂WO₄(c)$, but we cannot assess the reliability of this value.

King and Weller³²¹ have made C_p measurements on Na₂WO₄(c), leading to S° = 38.5 \pm 0.5 cal K⁻¹ mol⁻¹ as adopted in our Table V. Another extrapolation of the specific heat from 51 to 0 K has led to¹⁵¹ S° = 38.32 cal K⁻¹ mol⁻¹. The calorimetric measurements of Koehler et al.²¹⁵ [recalculated with our adopted ΔH_1° for $H_2WO_4(c)$] lead to ΔH_1° = -369.5 kcal mol⁻¹ for Na₂WO₄(c), and those of Graham and Hepler³²² give $\Delta H_f^{\circ} = -369.7$ kcal mol⁻¹. We adopt the mean value, $\Delta H_i^{\circ} = -369.6$ kcal mol⁻¹, for Na₂WO₄(c).

The ΔH_f° values listed in Table V for Na₂W₂O₇(c) and $Na₂WAO₁₃(c)$ are recalculated by us from the work of Koehler et al.²¹⁵ Our ΔG_f° for Na₂W₂O₇(c) is calculated from the adopted ΔH_i° and the third law entropy, ^{218a} $S^{\circ} = 60.8$ cal K^{-1} mol⁻¹.

We cannot account for any experimental values of ΔH_i° for $K_2WO_4(c)$, $Rb_2WO_4(c)$, or $Cs_2WO_4(c)$. O'Hare et al.²⁰⁹ cite ΔH_f° = -377.9 kcal mol⁻¹ for K₂WO₄(c) and have reported estimated ΔH_f° values for Rb₂WO₄(c) and Cs₂WO₄(c).

Yamdagni, Pupp, and Porter²¹⁷ have reported the value we list for $\Delta H_{\text{f}}^{\circ}$ (at 0 K) for Li₂WO₄(g), while the values listed for ΔH_f° for K₂WO₄(g) and KHWO₄(g) are due to Farber and Srivastava.²²⁰

The NBS 270-6 gives $\Delta H_f^{\circ} = -366.3$ kcal mol⁻¹ and S^o = 24.18 cal K^{-1} mol⁻¹ for MgWO₄(c). The entropy is from C_n measurements by King and Weller.³²¹ The high-temperature emf data of Rezukhina and Levitskii³²³ give ΔH_f° = -362.3 kcal mol⁻¹ (third law analysis¹⁵¹) or $\Delta H_1^{\circ} = -372.7$ kcal mol⁻¹ (second law analysis¹⁵¹). Our recalculation of calorimetric data from Navrotsky and Kleppa³²⁴ leads to ΔH_f° $= -362.7$ kcal mol⁻¹. We consider this last value to be the best one and adopt it in Table V. Combination of this ΔH_f° with the S° leads to our ΔG_{\circ}° .

For CaWO₄(c), S° = 30.21 cal K⁻¹ mol⁻¹ is listed in NBS 270-6, in close agreement with the value from King and Weller.³²¹ Barany's calorimetric data²¹¹ permit us to calculate ΔH_f° = -392.2 kcal mol⁻¹ for CaWO₄(c). The ΔH_f° value in NBS 270-6 is 1 kcal mol⁻¹ more negative, partly due to different choices of ΔH_f° for H₂WO₄(c). From our ΔH_f° value and the S^o value we obtain $\Delta G_f^{\circ} = -366.7$ kcal mol⁻¹. The solubility product for CaWO₄(c) is then calculated to be $K_{\rm so} =$ 4×10^{-12} , as compared to an old value, ⁷⁵ $K_{\rm sp} = 1 \times 10^{-12}$ based on conductance measurements.

NBS 270-6 lists ΔH_f° = -391.9 kcal mol⁻¹, ΔG_f° = -366 kcal mol⁻¹, and $S^{\circ} = 33$ cal K⁻¹ mol⁻¹ for SrWO₄(c). The ΔG_f° value is the same as reported by Levitskii and Rezukhina³²⁵ from high-temperature emf data, but these latter authors report $\Delta H_f^{\circ} = -393.5$ kcal mol⁻¹ and $S^{\circ} = 28.3$ cal K^{-1} mol⁻¹ for SrWO₄(c). This latter entropy seems to be unreasonably small. As the experimental ΔG_f° is more likely to be correct than the derived ΔH_1° , we follow NBS 270-6 and adopt $\Delta G_f^{\circ} = -366$ kcal mol⁻¹, $S^{\circ} = (33)$ cal K⁻¹ mol⁻¹, and calculate $\Delta H_f^{\circ} \simeq -391$ kcal mol⁻¹.

For BaWO₄(c), NBS 270-6 lists $\Delta H_f^{\circ} = -407$ kcal mol⁻¹, which is consistent with the results of Tammann and Westerhold, as cited by Bichowsky and Rossini.⁴⁵

The NBS 270-6 lists ΔH_f° (at 0 K) for MgWO₄(g), CaWO₄(g), and SrWO₄(g), while NBS 270-4 lists ΔH_f° (at 0 K) for SnWO₄(g) and Sn₂WO₅(g). The values are all consistent with the results of Verhaegen et al.²²² We have recalculated their results, using our properties of $WO₂(g)$ and $WO₃(g)$, and list these recalculated values in Table V. The uncertainty in these ΔH_f° values is about \pm 10 kcal mol⁻¹.

Our calculations with the high-temperature data of Rezukhina et al.^{326,327} lead to $\Delta H_f^{\circ} \simeq -317$ kcal mol⁻¹ for $MnWO₄(c)$. Two different calorimetric investigations³²⁸ lead to ΔH_f° = -311.9 kcal mol⁻¹ for MnWO₄(c), which is the value listed in NBS 270-4 and adopted for our Table V.

The ΔH_f° values listed in NBS 270-4 for FeWO₄(c), FeWO₄.

 $3H₂O(c)$, and $Fe₂(WO₄)₃·8H₂O(c)$ are apparently derived from old measurements by Tammann and Westerhold, as cited by Bichowsky and Rossini.⁴⁵ We adopt $\Delta H_f^{\circ} = -276$ kcal mol⁻¹ for FeWO₄(c) in Table V, but do not include ΔH_f° values for the other two compounds. The entropy of FeW04(c) has recently been determined by Lyon and Westrum.³³⁰ We adopt their $S^{\circ} = 31.61$ cal K⁻¹ mol⁻¹, in good agreement with the value in NBS 270-4, $S^{\circ} = 31.5$ cal K⁻¹ mol^{-1} , which is from Weller.²²⁷

The enthalpies of formation of $CoWO₄(c)$, NiWO₄(c), CuWO₄(c), ZnWO₄(c), and CdWO₄(c) can all be calculated from the measured heats of reaction of the corresponding oxides with WO₃(c) at 970 K.³²⁴ We have recalculated ΔH_1^2 for CoW04(c), using *C,,* data from Yakovleva and Rezukhina,327 and for the other compounds estimated that the enthalpy of reaction is 0.2 kcal mol⁻¹ less negative at 298 K than it is at 970 K to obtain the ΔH_f° values listed in our Table V. We note that the data from Tammann and Westerhold (as cited by Bichowsky and Rossini⁴⁵) lead to $\Delta H_f^{\circ} = -251$ kcal mol⁻¹ for CuWO₄(c) instead of -245.5 kcal mol⁻¹ as chosen by us. NBS 270-4 lists $\Delta H_f^{\circ} = -264$ kcal mol⁻¹ for CuWO4(c), from a source unknown to us. An older calorimetric³²⁸ ΔH_f° for NiWO₄(c) is 1.8 kcal mol⁻¹ more negative than our adopted value.

The value in Table V for ΔH_f° of ZnWO₄(c) agrees well with the value deduced from high-temperature equilibrium data, as discussed by Lyon and Westrum.³²⁹ The C_p measurements of Lyon and Westrum³³⁰ on ZnWO₄(c) lead to S° = 28.34 \pm 0.1 cal K⁻¹ mol⁻¹. From the calculated ΔG_f° = -268.5 kcal mol⁻¹, the solubility product of ZnWO₄(c) is found to be $K_{\rm{sp}} = 2.5 \times 10^{-11}$. We are not aware of any experimental determination of this quantity.

For PbWO₄(c) the NBS 270-4 lists S° = 40.2 cal K⁻¹ mol^{-1} , which is the third law value found by Weller and Kelley.²²⁸ The ΔH_f° = -277.0 kcal mol⁻¹ for PbWO₄(c) has been reported by Zharkova and Gerasimov³³¹ on the basis of earlier high-temperature equilibrium results. The solubility product is³³² $K_{\text{sp}} = 8.6 \times 10^{-17}$. We cannot assess the reliability of any of these values. They lead to an improbable S° = 32 cal K^{-1} mol⁻¹ for WO_4^2 ⁻(aq) [using the quoted S^o for PbWO₄(c) and data for Pb²⁺(aq) from NBS 270-3]. If we take our adopted S° = (11) cal K⁻¹ mol⁻¹ for WO₄²⁻(aq) and ΔH_f° = -277.0 kcal mol⁻¹ for PbWO₄(c), we calculate $K_{\rm so}$ = 2.5 X 10⁻²¹ and $\Delta H^{\circ}(\text{ppt})$ = -20.1 kcal mol⁻¹. If we instead begin with $K_{\text{sp}} = 8.6 \times 10^{-17}$, then $\Delta H_{\text{f}}^{\circ} = -270.8$ kcal mol⁻¹ and ΔH^5 (ppt) = -13.9 kcal mol⁻¹ are calculated. As this last value is closer to the heats of precipitation of PbMoO₄(c), CdWO₄(c), ZnWO₄(c), and CuWO₄(c) than the more exothermic heat of precipitation is, we hesitantly adopt ΔH_f° = -271 kcal mol⁻¹ for PbWO₄(c), noting that the discrepancies discussed here make a calorimetric determination of the ΔH_f° for PbWO₄(c) desirable.

The enthalpy of solution of $Ag_2WO_4(c)$ has been determined as 14.7 kcal mol⁻¹ from calorimetric measurements 322 (in which the experimental conditions were chosen to avoid the formation of polytungstates), and as 12.1 kcal mol^{-1} from the temperature variation of the solubility product.³³³ We adopt the former heat of solution, and estimate S° = (53) cal K⁻¹ mol⁻¹. We can then calculate for Ag₂WO₄(c): ΔH_f° = -220.7 kcal mol⁻¹, ΔG_i° = -198.9 kcal mol⁻¹, $K_{\text{sp}} = 4 \times 10^{-13}$, and also

 $Ag_2WO_4(c) + 2e^- = 2Ag(c) + WO_4^2$ ⁻(aq) $E^{\circ} = 0.434$ V

Pan's³³³ electrochemical measurements have led to $K_{\text{sp}} = 5$ \times 10⁻¹² and F° = 0.466 V. The differences between the values calculated by us and the experimental values exceed the stated uncertainties. A third law entropy for $Ag_2WO_4(c)$ is needed.

The free energies of formation of lanthanum and neodym-

ium tungstates have been investigated by emf methods at high temperatures.³³⁴ We cannot make calculations to relate the published data to our standard state at 298 K.

H. Halides and Oxyhalides of Tungsten

Fluorine combustion calorimetry by O'Hare and Hubbard³³⁵ has led to $\Delta H_f^{\circ} = -411.5$ kcal mol⁻¹ for WF₆(g). This value, which is in excellent agreement with the results of two more recent calorimetric investigations,³³⁶ is adopted in NBS 270-4 and our Table V. We also follow NBS 270-4 in adopting S° = 81.49 cal K⁻¹ mol⁻¹ from statistical calculations cited in the JANAF tables.¹⁵¹ Our calculated $\Delta G_f^{\circ} = -390.1$ kcal mol⁻¹ is consistent with the listed ΔH_f° and S° values.

The NBS 270-4 gives $\Delta H_f^{\circ} = -417.7$ kcal mol⁻¹ and S^o = 60.1 cal K^{-1} mol⁻¹ for WF₆(liq), values that are consistent with the above ΔH_i° for WF₆(g) and vapor pressures from Cady et al.^{240,337} We adopt these values, which lead to $\Delta G_{\text{f}}^{\circ}$ $= -390.0$ kcal mol⁻¹ for WF₆(liq).

The mass spectrometric investigation by Zmbov, Uy, and Margrave²⁴⁸ leads to our adopted $\Delta H_f^{\circ} \simeq -215$ kcal mol⁻¹ for WO₂F₂(g) and $\Delta H_f^{\circ} \simeq -316$ kcal mol⁻¹ for WOF₄(g). Burgess et al.³³⁸ have reported a calorimetric $\Delta H_f^{\circ} = -359$ kcal mol⁻¹ for WOF₄(c). The enthalpy of sublimation of WOF₄(c) reported by Cady and Hargreaves,²⁴⁷ $\Delta H^{\circ}(\text{subl})$ = 17.₀ kcal mol⁻¹, cannot be used to calculate ΔH_f° for $WOF₄(g)$, as it has been shown²⁴⁶ that oligomeric species are formed in the gas phase over $WOF_4(c)$. We combine the heats of formation with estimated entropies to calculate the free energies of formation in Table V.

Calorimetric measurements³³⁶ lead to $\Delta H_f^{\circ} = -345.9$ kcal mol⁻¹ for WF₅(c) on the basis of our adopted value of ΔH_f° for WF₆(g). The enthalpy of sublimation has been determined,³³⁹ leading to our adopted $\Delta H_f^{\circ} = -1316$ kcal mol⁻¹ for $(WF_5)_4(g)$.

Dittmer et al.³⁴⁰ have made equilibrium experiments at various temperatures leading to ΔH_f° values for the lower valent gaseous tungsten fluorides. The enthalpy of formation of $WF_4(q)$ is probably determined with good accuracy from these experiments, while the uncertainties in the values we list for WF(g), WF₂(g), and WF₃(g) probably are considerable.

The enthalpies of formation listed in Table V for the tungsten chlorides are mainly derived from measurements by Shchukarev et al.²⁴⁹ Solution calorimetry leads to ΔH_f° = -142 .9 kcal mol⁻¹ for WCl₆(c, α), based on our adopted ΔH_1° for WO₃-H₂O(c). Three investigations, cited in the JANAF tables, 15^1 are in good agreement with the enthalpy of sublimation of $WCl_6(c,\alpha)$ and thence $\Delta H_1^{\circ} = -118^\circ$, kcal mol⁻¹ for $WCl₆(q)$.

The uncertain ΔH_f° values listed in Table V for WCI₅(c), $WCI_5(g)$, $(WCI_5)_2(g)$, $WCI_4(c)$, and $WCI_4(g)$ are all derived from the equilibrium measurements by Shchukarev et al., 249 while ΔH_f° for WCI₂(c) is from combustion calorimetry.²⁴⁹

There are two calorimetric determinations of the enthalpy of reaction of $WO_2Cl_2(c)$ with aqueous hydroxide. We calculate ΔH_f° = -187.0 kcal mol⁻¹ from Shchukarev's data²⁴⁹ and ΔH_f° = -190.6 kcal mol⁻¹ from Oppermann's data.³⁴¹ We adopt $\Delta H_f^{\circ} = -189$ kcal mol⁻¹ for WO₂Cl₂(c). The enthalpy of sublimation is 26 kcal mol⁻¹ (at 298 K) according to a third law recalculation of the data of Shchukarev and SUVOrov as cited in the JANAF tables¹⁵¹ or 28 kcal mol⁻¹ according to Oppermann. 341 We adopt the mean value and then obtain $\Delta H_f^{\circ} = -162$ kcal mol⁻¹ for WO₂Cl₂(g).

For WOCl₄(c) the NBS 270-4 lists $\Delta H_f^{\circ} = -161.7$ kcal mol^{-1} , in good agreement with the results of Shchukarev et al.²⁴⁹ Oppermann's data³⁴¹ lead to ΔH_1° = -172.4 kcal mol^{-1} , which we adopt, as this value seems to be more reasonable in relation to the ΔH_f° of MoOCl₄(c).

It has been observed that the enthalpy of sublimation of

 $WOC₁₄(c)$ varies considerably with the temperature, 342 which might partly explain the difference between the value we calculate from the data of Enghag and Staffansson³⁴² $[\Delta H^o$ (sublimation) = 19.₀ kcal mol⁻¹] and that calculated¹⁵¹ from the data of Shchukarev and Suvorov $[\Delta H^{\circ}(\text{sub})) = 23.4$ kcal mol^{-1}]. We weight the more recent value more heavily, adopt ΔH° (subl) = 20.₀ kcal mol⁻¹, and calculate ΔH_f° = -152.4 kcal mol⁻¹ for WOCl₄(g).

An apparently reliable $S^{\circ} = 92.1$ cal K⁻¹ mol⁻¹ for WOCI₄(g) has been calculated from spectroscopically determined molecular parameters.343

Table V lists $\Delta H_f^{\circ} = -165.9$ kcal mol⁻¹ for WOCl₃(c) from calorimetric measurements by Oppermann, Stöver, and Kunze³⁴⁴ on the reaction between WOCl₃(c) and hydrogen peroxide in alkaline solution. We have used our adopted ΔH_f° value for Na₂WO₄(c) in this calculation, as well as for the corresponding calculations for $WO_2Cl_2(c)$ and $WOCl_4(c)$ described above.

Oppermann et al.³⁴⁴ also calculate ΔH° = 32.5 kcal mol⁻¹ of WOCl₂(c) for the reaction between WOCl₃(c) and WOCl₂(c) to form WOCl₄(g), whence $\Delta H_f^{\circ} = -147$ kcal mol⁻¹ for WOCl₂(c). This equilibrium study also leads to S° = 110 \pm 5 cal K⁻¹ mol⁻¹ for WOCl₄(g), in substantial disagreement with the value listed above, which casts suspicion also on the accuracy of the value quoted for ΔH_1° of $WOCI₂(c)$.

Burgess et al.³³⁸ have reported enthalpies of alkaline hydrolysis of WF₅Cl(liq) and WF₄Cl₂(liq), from which we calculate the ΔH_f° values listed in Table V for these compounds.

Shchukarev and Kokovin³⁴⁵ have made calorimetric measurements on the enthalpy of solution of $WBr_6(c)$ and WBr₅(c), leading to our adopted ΔH_f° values. The values in NBS 270-4 for these compounds are apparently also derived from this source. Shchukarev et al.³⁴⁶ have studied the sublimation of $WBr₅(c)$. Our interpretation of their results leads to $\Delta H_f^{\circ} = -52$ kcal mol⁻¹ for WBr₅(g). The uncertainty in this value overlaps the value given in NBS 270-4, $\Delta H_f^{\circ} = -55.4$ kcal mol $^{-1}$.

Two calorimetric investigations $347,348$ are in good agreement with $\Delta H_f^{\circ} = -170.2$ kcal mol⁻¹ for WO₂Br₂(c). The enthalpy of sublimation,³⁴⁸⁻³⁵⁰ 36.5 \pm 1.0 kcal mol⁻¹, leads to ΔH_f° = -133.7 kcal mol⁻¹ for WO₂Br₂(g). Gupta³⁴⁹ has studied the equilibria

$$
WO_2(c) + Br_2(q) = WO_2Br_2(q)
$$

and

$$
WO_2I_2(g) + Br_2(g) = WO_2Br_2(g) + I_2(g)
$$

with results that lead to $\Delta H_f^{\circ} = -131 \pm 2$ kcal mol⁻¹ for WO₂Br₂(g). We adopt $\Delta H_f^{\circ} = -133.0$ kcal mol⁻¹ for $WO_2Br_2(q)$. The entropy of $WO_2Br_2(q)$ has been calculated by Gupta³⁴⁹ from estimated molecular parameters.

From the heat of reaction of WOBr4(c) with aqueous hydroxide as reported by Oppermann and Stöver³⁴⁸ and by Shchukarev et al.,³⁴⁷ we obtain $\Delta H_f^{\circ} = -131.8$ kcal mol⁻¹ for WOB $r_4(c)$. The value listed in NBS 270-4 is consistent with the results of the latter investigation. 347 We adopt ΔH° (subl) = 30.0 \pm 0.5 kcal mol⁻¹ as an average of three investigations³⁴⁸⁻³⁵⁰ to obtain $\Delta H_f^{\circ} = -101.8$ kcal mol⁻¹ for WOBr4(g).

One calorimetric investigation by Oppermann et al.³⁵¹ leads to $\Delta H_i^{\circ} = -126.0 \text{ kcal mol}^{-1}$ for WOBr₃(c), as listed in Table V. They³⁵¹ have also studied the decomposition of WOBr₃(c) and calculated ΔH_1° for WOBr₂(c) from their data. As it has been suggested³⁵² that their measurements refer to nonequilibrium conditions, we have not included thermodynamic properties of $WORr₂(c)$ in Table V.

The reaction between $W(CO)_6$ and I_2 at 530 K has been studied calorimetrically by Virmani, Barnes, and Skinner.²⁶³

The values of ΔH_f° for WI₂(c) and WI₃(c) listed in Table V are derived from their results, using our adopted ΔH_f° for W(CO)- $_6$ (c), which we discuss later. As the products formed in the calorimetric reaction are not well defined, the uncertainties in the listed ΔH_f° values are fairly large (\sim 3 kcal mol⁻¹).

Gupta349,353 has investigated the thermal stabilities of tungsten oxyiodides and discussed earlier work. On the basis of his results and earlier data quoted by him, we adopt ΔH_i° $=$ -145.₄ kcal mol⁻¹ for WO₂I₂(c), $\Delta H_f^{\circ} = -102.3$ kcal mol⁻¹ for WO₂l₂(g), and $S^{\circ} = (89)$ cal K⁻¹ mol⁻¹ for $WO₂1₂(q)$. The entropy is calculated from estimated molecular parameters.353 The measurements also permit calculation of $\Delta H_f^{\circ} = -137 \pm 5$ kcal mol⁻¹ for WO₂I(c).

1. Other Tungsten Compounds

The enthalpies of formation of the gaseous calcium and strontium tungstites can be deduced from the mass spectrometric results of Verhaegen et al.²²² We list ΔH_1° (at 0 K) \simeq -118 kcal mol⁻¹ for CaWO₃(g), but omit SrWO₃(g), as the values for this compound seem to be erroneous.

The enthalpies of formation of $KWF₆(c)$, $KWCI₆(c)$, and K₂WCI₇(c), listed in our Table V, have been determined calorimetrically.^{354,355} Kudryashova et al.³⁵⁶ have reported enthalpies of combustion and alkaline oxidative hydrolysis for the compounds $M_3W_2Cl_9(c)$, where $M = K$, Rb, or Cs. We calculate ΔH_f° = -524 kcal mol⁻¹ or -536 kcal mol⁻¹ for $K_3W_2Cl_9(c)$ from the two experiments, using our adopted ΔH_f° values for K₂WO₄(c), WCI₅(c), and WCI₆(c). Our listed ΔH_f° values for the other two compounds are calculated from the results of the hydrolysis experiments. Although it is possible to use the bomb calorimetric results for calculation of ΔH_f° values for Rb₂WO₄(c) and Cs₂WO₄(c), the discordant ΔH_f° values listed above for K₃W₂Cl₉(c) indicate that the errors are too great to make such calculated ΔH_f° values useful.

Our Table V also includes ΔH_f° values for WF₅(OMe)(c), $cis-WF_4(OMe)_2(liq)$, and $cis-WF_2(OMe)_4(c)$, where OMe denotes the methoxide group. These enthalpies have been determined via alkaline hydrolysis.³³⁸

Emf measurements 357 on the equilibrium

 $WS_2(c) + 2H_2(g) = W(c) + 2H_2S(g)$

have led to $\Delta H_i^{\circ} = -54$ kcal mol⁻¹ and $S^{\circ} = 29$ cal K⁻¹ mol^{-1} for $WS₂(c)$.

The enthalpies of formation of the tungsten carbides have been determined by combustion calorimetry. Our adopted ΔH_f° = -6.3 kcal mol⁻¹ for W₂C(c) is from Mah,²⁷³ while ΔH_f° = -9.6₃ kcal mol⁻¹ for WC(c) is the mean of the values from Mah²⁷³ and from McGraw, Seltz, and Snyder.³⁵⁸

For $W(CO)_{6}(c)$ we adopt the same value as listed in NBS 270-4, $\Delta H_f^{\circ} = -227.9$ kcal mol⁻¹, calculated from the heat of combustion of $W(CO)_{6}(c)$ reported by Cotton, Fischer, and Wilkinson.¹⁷³ These authors¹⁷³ also quote from earlier measurements the enthalpy of sublimation, 17.7 kcal mol⁻¹. We calculate $\Delta H_f^{\circ} = -210.2$ kcal mol⁻¹ for W(CO)_e(g). We are not able to account for the value $(-208.3 \text{ kcal mol}^{-1})$ listed in NBS 270-4, which corresponds to 19.6 kcal mol⁻¹ for the enthalpy of sublimation.

Virmani, Barnes, and Skinner²⁶³ have recently proposed ΔH_f° = -229.0 \pm 0.8 kcal mol⁻¹ for W(CO)₆(c). This value has not been considered here, as it is based on calorimetric work that (as far as we know) is not yet published.

The most important W(IV) complex is the stable octacyanide, $W(CN)_{8}^{4-}$. Baadsgaard and Treadwell³⁵⁹ have made measurements leading to

$$
W(CN)83- + e^- = W(CN)84- \t Eo = 0.46 V
$$

Activity coefficients of $K_4W(CN)_8(aq)$ have been reported.³⁶⁰

Chart's recent review'66 of thermodynamic properties of silicides also covers tungsten and we agree with his analysis, leading to our adopted ΔH_f° and S° values for WSi₂(c) and $W₅Si₃(c)$. The listed free energies are consistent with the tabulated ΔH_f° and S° values. The only value listed in NBS 270-4 for these compounds is $\Delta H_f^{\circ} = -22$ kcal mol⁻¹ for $WSi₂(c)$, which agrees with our selected value.

High-temperature equilibrium measurements by Opalovskii et al.³⁶¹ lead to our listed values of ΔH_1° and S° for WTe₂(c), from which we calculate ΔG_f° .

The thermal decomposition of some potassium peroxotungstates has been studied, but we are not able to calculate any ΔH_f° values from the published data.³⁶²

Morozova and Ovcharova³⁶³ have prepared a series of sodium-tungsten bronzes, Na_xWO_3 with 0.4 \lt $x \lt 0.8$, and demonstrated that the enthalpy of formation is a linear function of *x.* Their values are in reasonable agreement with the enthalpies of formation of $Na_{0.53}WO₃$ and $Na_{0.77}WO₃$ reported by Dickens and Neild.³⁶⁴ The values listed in our Table V for $Na_{0.679}WO₃(c)$ are also taken from Dickens and Neild.³⁶⁴ Dickens et al.³⁶⁵ have reported the ΔH_f° values for $H_{0.18}WO_3(c)$, $H_{0.35}WO_3(c)$, and $(NH_4)_{0.25}WO_3(c)$ that we adopt.

Acknowledgments. We are grateful to the National Research Council of Canada for support of this research and to Rosemary Howard of the University of Lethbridge library for her help and skill in obtaining photocopies of many papers. I.D. is grateful for travel grants from Bokelundska resestipendiet and Per Westlings minnesfond.

IV. Appendix

In this Appendix we call attention to some results that have become available to us since the main body of this review was completed.

Measurements by Kim and Belton³⁶⁶ lead to properties of $CrO₃(g)$ that differ from those listed in Table I. They³⁶⁶ also provide information about CrO₂OH(g). Further measurements and calculations by Sano and Belton³⁶⁷ complement results already cited for $CrO₂Cl₂(g)$.

Jones et al.³⁶⁸ have reported solubilities of $Ag_2CrO_4(c)$ from 5 to 80 °C.

O'Hare et al.³⁶⁹ have made calorimetric measurements leading to ΔH_f° values for Cs₂CrO₄(c), Cs₂Cr₂O₇(c), $Cs₂Mo₂O₇(c), MoC_{0.502}(c), and MoC_{0.651}(c).$

High-temperature properties of $Na₂CrO₄(c$ and liq) and $Na₂WO₄(c and lig) have been reported.³⁷⁰$

Enthalpies of solution have been reported³⁷¹ for $Pr_2(CrO_4)_3$ - $7H_2O(c)$, Pr₂(CrO₄)₃(c and amorph), and some related compounds.

New calorimetric measurements leading to ΔH_f° values for PbCrO₄(c), PbMoO₄(c), and PbWO₄(c) have been made.³⁷²

High-temperature emf results³⁷³ are in reasonable agreement with our tabulated properties of $CrCl₂(c)$ and $CrCl₃(c)$.

New results on vaporization of $CrCl₂(c)$ have been reported by Ratykovskii et al., 374 leading to possibly improved properties of $CrCl₂(q)$ and to new properties for gaseous di-

mers and trimers.
Aits and Schäfer³⁷⁵ have reported high-temperature equilibrium results for formation of $CrAl₂Cl₈(g)$.

New calorimetric measurements³⁷⁶ have led to ΔH_f° = -60.0 ± 1.5 kcal mol⁻¹ for Cr³⁺(aq), as compared to -67.9 kcal mol⁻¹ from NBS 270-4 and -57 kcal mol⁻¹ previously adopted here. New ΔH_f° values are also reported³⁷⁶ for the inner-sphere complexes $CrF^{2+}(aq)$, $CrCl^{2+}(aq)$, $CrBr^{2+}(aq)$, and $CrSO₄⁺(aq)$.

Results of equilibrium measurements on chromium hydride have been reported.377

Vecher et al.378 have reported high-temperature emf results for formation of $CrSb(c)$ and $CrSb₂(c)$.

Rosén³⁷⁹ has described new high-temperature emf measurements involving CuCrO₂(c), with results that appear superior to those¹⁵² that we rejected earlier.

In an important paper that has significance beyond this particular group of elements, Benz, Elliot, and Chipman³⁸⁰ have reported results of their measurements on the system Fe-Cr-C.

Pittam et al.³⁸¹ have reported new measurements leading to ΔH_f° for Cr(CO)₆(c) in excellent agreement with the value we tentatively adopted earlier. From the same laboratory we also have results³⁸² of new statistical thermodynamic calculations of properties of $Cr(CO)_{6}(g)$, $Mo(CO)_{6}(g)$, and $W(CO)_{6}(q)$.

In the main body of this review we distinguished between $CaMoO₄(c)$ and $CaMoO₄(ppt)$. It now appears³⁸³ well established that the substance we represented by $CaMoO₄(ppt)$ is actually CaMoO₄ $\frac{1}{2}H_2O(c)$, which requires revisions of some of our thermodynamic calculations.

Calorimetric measurements have led³⁸⁴ to ΔH_i° for $Cs₂Mo₂O₇(c)$ and to³⁸⁵ high-temperature properties of $Cs₂MoO₄(c)$. We also have new low-temperature heat capacities and derived thermodynamic properties for $FeMoO₄(c).³⁸⁶$

Johnson³⁸⁷ has reported results of his study of vaporization of $Cs_2MOO₄(c$ and liq) and $Na_2MoO₄(liq)$.

Kiwia and Westrum³⁸⁸ have measured heat capacities and evaluated reliable third law entropies for $MoSe₂(c)$, MoTe₂(c), and various chlorides and oxychlorides of molybdenum. Use of these entropies with equilibrium results cited earlier will lead to significantly improved thermodynamic properties for several compounds.

DSC measurements by Kigoshi³⁸⁹ lead to ΔH values for vaporization and decomposition of NOMoF₄(c).

McKnight and Haight³⁹⁰ have extended and improved on earlier work²⁸⁵ on association of Mo(CN)₈⁴⁻(aq) with H⁺(aq) and $Fe^{3+}(aq)$.

Chart³⁹¹ has published an account of his experimental investigations and thermodynamic analysis of the Mo-Si system.

High-temperature emf investigations have led to information about thermodynamic properties of tungstates of scandium, 392 manganese, 393 nickel, 393 strontium, 394 and yttrium. 395

Gusarov et al.³⁹⁶ have reported results of their mass spectrometric investigation of WF₅, with related thermodynamic calculations.

Statistical calculations³⁹⁷ have led to $S^{\circ}{}_{298}$ = 73.22 cal K^{-1} mol⁻¹ for WCI₆(g), as compared to $S^{\circ}{}_{298} = (100)^{151}$ that was listed in Table V.

Free energies based on emf measurements³⁹⁸ and heat capacities based on DTA measurements³⁹⁹ have been reported for sodium tungsten bronzes, $Na_xWO₃$.

Results of new calorimetric measurements⁴⁰⁰ lead to a ΔH_f° for W(CO)₆(c) that is probably better than our previously selected value.

V. References and Notes

- (1) Chemical Center, Physical Chemistry I, University of Lund, Lund, Swe-
- (2) Department of Chemistry, Wollongong University College, Wollongong, N.S.W., Australia.
- (3) D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. **M.** Bailey, and R. H. Schumm, "Selected Values of Chemical Thermodynamic Properties", National Bureau of Standards Technical Note **270-3,** U.S. Gov-
- ernment Printing Office, Washington, D.C.. **1968. (4)** D. D. Wagman, w. H. Evans, v. B. Parker, I. Halow, **S. M.** Bailey, and R. H. Schumm, "Selected Values of Chemical Thermodynamic Properties", National Bureau of Standards Technical Note 270-4, **U.S.** Government Printing Office, Washington, D.C., 1969.
- (5) V. B. Parker, D. D. Wagman, and W. H. Evans, "Selected Values of

Chemical Thermodynamic Properties". National Bureau of Standards Technical Note 270-6, U.S. Government Printing Office, Washington, D.C., 1971.

- (6) R. N. Goldberg and L. G. Hepier, Chem. Rev., **68,** 229 (1968).
- (7) I. M. Kiotz and R. M. Rosenberg, "Chemical Thermodynamics", **3d** ed. W. A. Benjamin, Menlo Park, Calif., 1972; G. N. Lewis and M. Randall (revised by K. S. Pitzer and L. Brewer), "Thermodynamics", McGraw-Hill, New York, N.Y., 1961.
-
- (8) E. A. Heintz, J. lnorg. *Nucl.* Chem.. **21,** 262 (1961). (9) B. D. Nash. T. T. Campbell, and F. E. Block, Bureau of Mines Report of investigations No. 71 12, U.S. Government Printing Office, Washington, D.C., 1968.
- (10) I. Bernal and S. E. Harrison, J. Chem. Phys., **34,** 102 (1961). (1 1) L. Petrakis, J. Phys. Chem., **66,** 433 (1962).
-
- (12) A. J. Deyrup, lnorg. Chem., **3,** 1645 (1964).
- (13) R. L. de Beauchamp and T. A. Sullivan, Bureau of Mines Report of Investigations No. 7194, U.S. Government Printing Office, Washington, D.C., 1968.
- (14) E. Kyuno, M. Kamada, and N. Tanaka, *Bull.* Chem. *SOC. Jpn.,* **40,** 1848 (1967).
- (15) T. W. Swaddle, J. H. Lipton, G. Guastalla. and P. Bayliss, Can. J. Chem., **49,** 2433 (1971).
- (16) N. C. Tombs, W. J. Croft, J. R. Carter, and J. F. Fitzgerald, lnorg. Chem., **3,** 1791 (1964); H. C. Clark and Y. N. Sadana, Can. *J.* Chem., **42,** 50, 702 (1964).
- (17) H. C. Mishra and M. C. R. Symons, *J.* Chem. SOC., 4490 (1963).
- (18) N. Bailey and M. C. R. Symons, *J.* Chem. *SOC.,* 203 (1957).
- (19) J. A. Connor and E. A. V. Ebsworth in "Advances in Inorganic Chemistry and Radiochemistry", Vol. 6, H. J. Emeléus and A. G. Sharpe, Ed., Accelemic Press, New York, N.Y., 1964.
Academic Press, New York, N.Y., 1964.
(20
-
-
- (21) B. L. Bartlett and D. Quane, *Inorg. Chem.*, **12,** 1925 (1973).
(22) K. K. Kelley and E. G. King, "Contributions to the Data on Theoretical
Metallurgy. XIV. Entropies of the Elements and Inorganic Com-
pounds", Bureau fice, Washington, D.C., 1961. (23) K. Clusius and P. Franzosini, *Z. Naturforsch.* A, **17,** 525 (1962).
-
- (24) G. I. Kaiishevich, P. V. Gei'd, and R. P. Krentsis, Russ. J. Phys. Chem. (Engl. Transl.), **39,** 1602 (1965). (25) **A.** B. Bonilla and C. W. Garland, J. Phys. Chem. Solids, **35,** 671
- (1974).
- (26) D. R. Stull and G. C. Sinke, "Thermodynamic Properties of the Elements", Adv. Chem. Ser., **No. 18** (1956). (27) E. K. Storms, "The Refractory Carbides", Academic Press, New York,
- N.Y.. 1967.
- (28) D. S. Dickson, J. R. Myers, and R. K. Saxer, J. Phys. Chem., **69,** 4044 ^f1965). **I,**
- R. T. Grimley, R. P. Burns, and M. G. Inghram, J. Chem. Phys., **34,** 664 (1961) .
- (30) D. M. Chizhikov, Y. V. Tsvetkov, E. K. Kazenas, and V. K. Tagirov, Russ. J. Phys. Chem. (Engl. Transl.), **46,** 468 (1972). M. Farber and R. D. Srivastava, Combust. flame, **20,** 43 (1973).
-
- G. Nagarajan, Aust. J. Chem., **16,** 908 (1963).
- S. M. Ariya. S. A. Shchukarev, and V. B. Glushkova. *J.* Gen. Chem. USSR(€ngI. Transl.). **23,** 1307 (1953). A. D. Mah, J. Am. Chem. *SOC.,* 76,3363 (1954).
-
- (35) A. D. Mah, Bureau of Mines Report of Investigations No. 7217, U.S. Government Printing Office, Washington, D.C.. 1969.
- (36) I. A. Novokhatskii and L. M. Lenev, Russ. J. Inorg. Chem. (Engl. *Transl.),* **11,** 1078 (1966).
- (37) K. K. Kelley, "Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds", Bureau of Mines Bulletin 584, US. Government Printing Office, Washington, D.C., 1960.
- J. N. Ramsey, D. Caplan, and A. A. Burr, J. Nectrochem. *SOC.,* **103,** 135 (1956).
- (39) J. D. Tretjakow and H. Schmalzried, Ber. Bunsenges. Phys. Chem., **69,** 396 (1965).
- F. N. Mazandarany and R. D. Pehlke, J. Electrochem. SOC., **121,** 711 (1974).
- (41) Y. Jeannin, C. Mannerskantz, and R. D. Richardson, *Trans.* Metall. *SOC.* AlM€, **227,** 300 (1963).
- A. D. Kulkarni and W. L. Worrell, Metall. *Trans.,* **3,** 2363 (1972).
- L. G. Hepler. J. Am. Chem. *SOC.,* **80,** 6181 (1958); C. N. Muldrow, Jr., and L. G. Hepler, ibid., **79,** 4045 (1957). Comparison of quantities calculated in these two papers clearly illustrates the importance of bas-ing thermodynamic calculations for aqueous solutions on reaction equations that correctly indicate the important species in solution. The calculations in the 1958 paper are as reliable as the available data permit, except for a change in ΔH_t° of CrO₃(c) discussed elsewhere in this review. But some of the calculations in the 1957 paper yielded incorrect results because of neglect of one important aqueous $species.$
(44) \overline{C} . A
- C. **A.** Neugebauer and J. L. Margrave, J. Phys. Chem., **61,** 1429 (1957).
- F. R. Bichowsky and F. D. Rossini, "The Thermochemistry of the
- Chemical Substances", Reinhold, New York, N.Y., 1936. R. Richelmi and M. Laffitte, C. R. Acad. *Sci.,* Ser. C, **265,** 541 (1967). J. D. McDonald and J. L. Margrave, J. lnorg. *Nucl.* Chem., **30, 665**
- (1968). W. V. Smith, K. S. Pitzer, and W. M. Latimer, J. Am. Chem. *SOC.,* **59,** 2642 (1937).
- K. Pan, J. Chinese Chem. *SOC.* (Taipei), **1,** 1 (1954).
-
- J. Y. Cann and G. B. Mueller. J. Am. Chem. *SOC.,* **57,** 2525 (1935). **J. R.** Howard and G. H. Nancollas. *Trans.* Faraday *SOC.,* **53,** 1449

(1957).

-
- (52) H. G. Linge and A. L. Jones, Aust. *J.* Chem.. **21,** 2189 (1968). (53) J. D. Neuss and W. Rieman. J. Am. Chem. *Soc.,* **56,** 2238 (1934).
- (54) J. R. Howard, V. S. K. Nair. and G. H. Nancolias, *Trans.* Faraday *Soc.,* 54, 1034 (1958).
- (55) N. Bailey, A. Carrington, K. A. K. Lott, and M. C. R. Symons, J. Chem. Soc., 290 (1960).
- (56) Y. Sasaki,'Acta Chem. Scand., **16,** 719 (1962).
-
-
-
-
- (57) J. Galea and J. Haladjian, *Rev. Chim. Miner.*, **7,** 623 (1970).
(58) R. Arnek and S. R. Johansson, *Acta Chem. Scand.*, **26**, 2903 (1972).
(69) H. G. Linge and A. L. Jones, *Aust. J. Chem.*, **21, 1445** (1968).
(60) W (1961); B. Perlmutter-Hayman and Y. Weissmann, *Isr.* J. Chem., **6,** 17 (1968).
-
-
- (63) J. G. Mason and A. D. Kowalak, *Inorg. Chem.*, **3,** 1248 (1964).
(64) J. Lagrange and J. Bye, *Bull. Soc. Chim. Fr.*, 1490 (1967).
(65) J. Y. Tong and R. L. Johnson, *Inorg. Chem.*, **5,** 1902 (1966).
(66) G. P. Haight
- (67) F. Holloway, J. Am. Chem. *SOC.,* **74,** 224 (1952).
- (68) J. H. Espenson and S. R. Helzer, lnorg. Chem., **8,** 1051 (1969).
-
- (69) O. Glemser and A. Mueller, *Z. Anorg. Chem.*, **334,** 150 (1964).
(70) M. J. Ferrante, J. M. Stuve, and M. P. Krug, Bureau of Mines Report of
Investigations No. 7691, U.S. Government Printing Office, Washington, D.C., 1972.
- (71) T. Nelson, C. Moss, and L. G. Hepier. J. Phys. Chem., **64,** 376 (1960).
- (72) L. F. Shmagin and A. A. Shidiovskii. Russ. J. Phys. Chem.. **45,** 310 (1971).
- **F.** D. 'Rossini, D. D. Wagman, W. H. Evans, S. Levine. and I. Jaffe, "Selected Values of Chemical Thermodynamic Properties", National Bureau of Standards Circular 500, U.S. Government Printing Office,
- Washington, D.C., 1952.
A. A. Shidlovskii, A. A. Voskresenskii, and T. N. Balakireva, *Russ. J.*
P*hys. Chem.,* **45,** 1067 (1971).
L. G. Silién and A. E. Martell, ''Stability Constants of Metal-Ion Com-
- plexes", Chem. *SOC.,* Spec. Pub/., **No. 17,** (1964).
- G. L. Beyer and W. Rieman, J, Am. Chem. *SOC.,* 65,971 (1943). I. M. Kolthoff, R. W. Perlich. and W. Weiblen, J. Phys. Chem., **46,** 561
- (1942) .
- S. Suzuki, *J.* Chem. *SOC.* Jpn., Pure Chem. Sect., **74,** 219 (1952);
- *Chem. Abstr.,* **47,** 10970b (1953).
M. Gaultier and G. Pannetier, *Rev. Chim. Miner.,* **9,** 271 (1972); M. Na-
tarajan and E. E. Secco, *Can. J. Chem.*, 52, 712 (1974).
A. Engelbrecht and A. V. Grosse, *J. Am. Chem. Soc.,*
- (1952)
- **A.** J. Edwards, W. E. Falconer, and W. A. Sunder, J. Chem. *Soc.,* Dal*ton Trans.,* 541 (1974).
- W. H. Hartford and M. Darrin, Chem. Rev., **58,** 1 (1958).
-
- J. G. Spencer and L. G. Hepler, unpublished enthalpy of reaction of CrO₂Cl₂(liq) with excess OH⁻⁻(aq), 1959.
W. N. Hansen and M. Griffel, J. Chem. Phys., **28**, 902 (1958).
W. N. Hansen and M. Griffel, J. Chem. Phys.,
- H. Tanaka, A. Yamaguchi, nnd J. Moriyama, *J.* Jpn. Metall. *SOC..* **35,**
- 1161 (1971). We are grateful to Dr. K. Nakamura for his translation.
R. A. Kent and J. L. Margrave, *J. Am. Chem. Soc.,* **87,** 3582 (1965).
K. F. Zmbov and J. L. Margrave, *J. Inorg. Nucl. Chem.,* **29,** 673 (1967).
J. W. S
-
-
- M. Papapietro and G. Monnier. C. R. Acad. Sci., Ser. C, **273,** 703 (90) (1971)
- (91) C. G. Maier, Bureau of Mines Bulletin 436, U.S. Government Printing Office, Washington, D.C., 1942.
- (92) R. Shaw and R. F. Porter, personal communication to L. G. H.. 1973. (93) R. C. Schoonmaker, A. H. Friedman, and R. F. Porter, *J. Chem. Phys.*, **31,** 1586 (1959).
- K. Sano. J. Chem. *SOC.* Jpn., **59,** 17 (1938); Chem. Abstr., **32,** 2813 (1938).
- I. V. Vasii'kova, A. I. Efimov, and B. *2.* Pitirimov, *Russ.* J. Inorg. Chem., **9,** 417 (1964); S. A. Shchukarev, I. V. Vasil'kova, A. I. Efimov, and B. Z. Pitirimov. *ibid.*, **11**, 268 (1966).
- (96) N. W. Gregory and T. R. Burton. J.'Am. Chem. *SOC.,* **75,** 6054 (1953).
- (97) S. A. Shchukarev, T. A. Tolmacheva, M. A. Oranskaya, and E. A. Ukraintseva, *Zh.* Neorg. *Khim.,* **1,** 1697 (1956).
- (98) R. J. Sime and **N.** W. Gregory, *J.* Am. Chem. *SOC.,* **82,** 800 (1960). (99) V. A. Rupcheva, T. V. Romanova, and S. A. Amirova, *Russ. J.* lnorg.
- Chem., **15**, 170 (1970).
(100) T. L. Allen, *J. Am. Chem. Soc.*, **78**, 5476 (1956).
(101) L. L. Handy and N. W. Gregory, *J. Am. Chem. Soc.*, **72**, 5049 (1950).
(102) C.-F. Shieh and N. W. Gregory, *J. Phys. Chem.*, **77**,
-

(1970).

-
-
-
-
- 29, 109 (1972).
105) I. V. Vasil'kova, A. I. Efimov, P. S. Shapkin, and A. A. Vishnyakov,
Russ. J. Inorg. Chem., 14, 219 (1969).
106) N. V. Galitskii, K. P. Minina, and G. M. Borisovskaya, *Russ. J. Inorg.*
- Chem., **12,** 1386 (1967). (107) C. M. Cook, Jr., *J.* lnorg. *Nucl.* Cbem., **25,** 123 (1963). (108) H. W. Jenkins, G. Mamantov, and D. L. Manning, *J.* Electrochem. *Soc.,*

(109) M. W. Evans in "The Transuranium Elements", G. T. Seaborg. J. J. **117,** 183 (1970). Katz, and W. M. Manning, Ed., McGraw-Hill, New York, N.Y., 1949.
(110) P. Gross, G. L. Wilson, and W. A. Gutteridge, *J. Chem. Soc. A,* 1908

-
- (111) G. Grube and L. Schlecht, *Z. Electrochem.*, **32,** 178 (1926).
(112) L. G. Sillén and A. E. Martell, "Stability Constants of Metal-lon Complexes", Supplement No. 1, *Chem. Soc. Spec. Publ.*, No. 25 (1971).
- (113) K. M. Sancier and J. S. Mills, J. Phys. Chem., **67,** 1438 (1963); B. A.
- Zabin and H. Taube, *Inorg. Chem.*, **3,** 963 (1964); J. Levitan, *J. Elec-
trochem. Soc., 111, 286 (1964); G. Thompson, <i>Univ. Calif. Radiat.*
L*ab. Rep.,* 11410 (1964); J. E. Finholt, *ibid.,* 8879 (1960). (114) U. von Meyenburg, 0. Siroky, and G. Schwarzenbach. Helv. Chim.
- *Acta,* **56,** 1099 (1973).
(115) T. W. Swaddle and P. C. Kong, *Can. J. Chem.,* 48, 3223 (1970).
(116) C. Postmus and E. L. King, *J. Phys. Chem.*, 59, 1208 (1955).
(117) K. Schug and E. L. King, *J. Am. Chem. Soc.*, 80, 1
-
-
-
- (118) T. W. Swaddle and E. L. King, *Inorg. Chem.,* **4,** 532 (1965).
(119) J. H. Espenson and O. J. Parker, *J. Am. Chem. Soc.*, **90,** 3689 (1968).
(120) C. F. Hale and E. L. King, *J. Phys. Chem., 71*, 1779 (1967).
(121)
-
-
- (122) H. *S.* Gatesand E. L. King, J. Am. Chem. *SOC.,* **60,** 5011 (1958). (123) D. F. C. Morris and S. D. Hammond, Electrochim. Acta, **13,** 545
- (1968).
- (124) A. B. Lamb and G. R. Fonda, J. Am. Chem. *SOC.,* **43,** 1155 (1921); R. E. Hamm and C. M. Shull. Jr., ibid., **73,** 1240 (1951); G. Schwarzen-bach, Pure Appl. Chem., **5,** 377 (1962).
- (125) H. B. Johnson and W. L. Reynolds, lnorg. Chem., **2,** 468 (1963); E. L. King, M. J. M. Woods, and H. S. Gates, J. Am. Chem. Soc., **80,** 5015 (1958).
- (126) J. H. Espenson and E. L. King, J. Phys. Chem., **64,** 380 (1960). (127) L. 0. Spreer and E. L. King, lnorg. Chem., **10,** 916 (1971).
-
- (128) T. W. Swaddle and G. Guastalla, lnorg. Chem., **7,** 1915 (1968).
-
- (129) J. H. Espenson and D. E. Binau, *Inorg. Chem.,* 5, 1365 (1966).
(130) *K.* Nagase and N. Tanaka, *Bull. Chem. Soc. Jpn.,* **45,** 1097 (1972); Y.
Kaji, A. Uehara, E. Kyuno, and R. Tsuchiya, *ibid.*, **43,** 1906 (1970). (131) K. M. Jones and J. Bjerrum, Acta Chem. Scand.. 19, 974 (1965).
- (132) E. E. Mercer and J. A. Hormuth, *J.* lnorg. *Nucl.* Chem., **31,** 2145 (1969).
-
- (133) M. Ardon and N. Sutin, *Inorg. Chem.*, **6,** 2268 (1967).
(134) N. Fogel, J. M. J. Tai, and J. Yarborough, *J. Am. Chem. Soc.*, **84,** 1145
(1962); R. Tsuchiya and A. Umayahara, *Bull. Chem. Soc. Jpn.*, 3**6**, 554
(1963
- (135) D. N. Hume and I. M. Kolthoff. *J.* Am. Chem. *Soc.,* **65,** 1897 (1943).
- (136) F. H. Guzzetta and W. B. Hadley, lnorg. Chem., **3,** 259 (1964). (137) K. G. Poulsen, J. Bjerrum, and I. Poulsen, Acta Chem. Scand., **8,** 921 (1954).
- (138) J. C. Templeton and E. L. King, J. Am. Chem. *SOC.,* **93,** 7160 (1971).
- (139) S. C. Chan and K. Y. Hui, Aust. *J.* Chem., **21,** 3061 (1968).
- (140) A. J. Cunningham, D. A. House, and H. K. J. Powell, Aust. J. Chem., **23,** 2375 (1970).
- (141) N. V. Duffy and J. E. Earley, *J.* Am. Chem. *SOC.,* **89,** 272 (1967).
-
- (142) G. Guastalla and T. W. Swaddle, *Can. J. Chem.*, **51**, 821 (1973).
(143) J. P. Birk and J. H. Espenson, *Inorg. Chem.*, **7**, 991 (1968); D. N. Purohit and J. Bjerrum, *J. Inorg. Nucl. Chem.*, **7**, 991 (1968); D. N. P and A. Haim, J. Am. Chem. *SOC.,* **93,** 867 (1971); J. H. Espenson and W. R. Bushey. lnorg. Chem., **10,** 2457 (1971).
- (144) W. W. Wendlandt and J. L. Bear, J. Inorg. Nucl. Chem., 22, 77 (1961);
R. Tsuchiya, Y. Kaji, A. Uehara, and E. Kyuno, *Bull. Chem. Soc. Jpn.*, 42, 1881 (1969); W. W. Wendlandt, G. D'Ascenzo, and R. H. Gore, Thermochi
- (145) F. S. Boericke and W. M. Bangert, Bureau of Mines Report of Investigations No. 3813, U.S. Government Printing Office, Washington, D.C., 1945.
- (146) H. M. Chen and J. Chipman, Trans. Am. *SOC. Met.,* **38,** 70 (1947). (147) T. Katsura and A. Muan, Trans. Metall. *SOC.* AIM€, **230,** 77 (1964).
-
- (148) F. Muller and 0. J. Kleppa. *J.* lnorg. *Nucl.* Chem., **35,** 2673 (1973).
-
- (149) N. G. Schmahl and E. Minzi, *Z. Phys. Chem.,* 47, 358 (1965).
(150) E. Aukrust and A. Muan, *J. Am. Ceram. Soc.*, 46, 358 (1963).
(151) "JANAF Thermochemical Tables", 2d ed. D. R. Stull, H. Prophet, et
- ai., NSRDS-NBS 37, US. Government Printing Office, Washington, D.C., 1971. (152) A. G. Zalazinskii, V. F. Balakirev, N. M. Chebotaev, and G. I. Chufarov,
- *Russ.* J. lnorg. Chem., **14,** 326 (1969).
-
- (153) H. v. Wartenberg, *2.* Anorg. Chem., **249,** 100 (1942). (154) H. A. Doerner, Bureau of Mines Technical Paper No. 577, U.S. Gov-
-
- ernment Printing Office, Washington, D.C., 1937.

(155) H. Oppermann, Z. Anorg. Chem., 359, 51 (1968).

(156) R. J. Sime and N. W. Gregory, J. Am. Chem. Soc., 82, 93 (1960).

(157) G. P. Haight, Jr., T. J. Huang, and H. Pl 2110 (1959); J. H. Espenson and **R.** J. Kinney, lnorg. Chem., **10,** 376 (1971).
- (158) G. Wolf, Phys. Status SolidiA **5,** 627 (1971).
- (159) A. Sieverts and A. Gotta, *2.* Anorg. Chem., **172,** 1 (1928).
- (160) A. D. Stock and K. I. Hardcastie, J. lnorg. *Nucl.* Chem., **32,** 1183 (1970).
- (161) H. Mabuchi. N. Sano, and Y. Matsushita, Metall. Trans., **2,** 1503 (1971).
- (162) H. Kleykamp, Ber. Bunsenges. Phys. Chem., **73,** 354 (1969).
- (163) F. J. Kohl and C. A. Stearns, J. Phys. Chem., **74,** 2714 (1970).
-
- (164) A. D. Mah, Bureau of Mines Report of Investigations No. 5529, U.S.
Government Printing Office, Washington, D.C., 1960.
(165) T. Mills, J. Less-Common Met., 22, 373 (1970); 23, 317 (1971); A. U.
Seybolt and R. A. Ori
- (166) T. G. Chart, National Physical Laboratory (England) Report Chem..

- Aug. 18, 1972. (167) V. N. Eremenko, G. M. Lukashenko. and V. **R.** Sidorko, *Russ. J.* Phys. Chem., **45,** 1133 (1971); A. S. Bolgar, *S.* **P.** Gordienko, A. A. Lysenko, and V. V. Fesenko, ibid., **45,** 1154 (1971); Y. M. Golutvin and **L.** Chin-K'uei, ibid., **35,** 62 (1961).
- (168) G. I. Kalishevich, V. L. Zagryazhskii. L. V. Shchipanova, **N.** N. Sere-brennikov, and P. V. Gel'd, *Russ. J.* Phys. Chem., **43,** 132 (1969).
- (169) J. P. Hager and J. F. Elliott, Trans. Metall. Soc. AM€, **239,** 513 (1967). (170) J. Drowart. A. Pattoret. and *S.* Smoes, Proc. *Br.* Ceram. SOC., *8,* 67 (1967).
- (171) F. Gr4nwold and E. F. Westrum. Jr., *2.* Anorg. Chem., **328,** 272 (1964).
-
- (172) F. Grønwold, *J. Chem. Thermodyn.*, **5,** 545 (1973).
(173) F. A. Cotton, A. K. Fischer, and G. Wilkinson, *J. Am. Chem. Soc.*, **78,** 5168 (1956).
- (174) H. A. Skinner and Y. Virmani, *Rev. Roum. Chim.,* **17,** 467 (1972).
(175) J. A. Connor, H. A. Skinner, and Y. Virmani, *J. Chem. Soc., Faraday*
Trans. 1, 68, 1754 (1972).
(176) T. N. Rezukhina and V. V. Shvyrev, *V*
- Chem. Abstr., **47,** 4676h (1953); A. A. Boni, J. Electrochem. SOC.. **113,** 1089 (1966).
- (177) N. S. Hawkins, H. C. Mattraw, W. W. Sabol, and D. **R.** Carpenter, *J.* Chem. Phys., **23,** 2422 (1955).
-
- (178) K. Kawai and H. Murata. *Bull.* Chem. *Soc. Jpn.,* **33,** 1008 (1960). (179) D. L. S. Brown, J. A. Connor, and H. A. Skinner, *J.* Chem. *SOC.,* Faraday Trans. *1,* **70,** 1649 (1974).
- (180) J. D. Cox and G. Pilcher, "Thermochemistry of Organic and Organometallic Compounds", Academic Press, New York, N.Y., 1970.
(181) S. J. Ashcroft and C. T. Mortimer, "Thermochemistry of Transition
Metal Complexes", Aca
-
-
- (183) D. C. Bradley and M. J. Hillyer, *Trans. Faraday Soc.,* **62,** 2382 (1966).
(184) V. I. Tel'noi, I. B. Rabinovich, B. G. Gribov, A. S. Pashinkin, B. A. Sala-
matin, and V. I. Chernova, *Russ. J. Phys. Chem.,* 46, 465
-
- (185) M. Sorai, M. Tachiki, H. Suga, and S. Seki, J. Phys. *Soc.* Jpn., **30,** 750 (1971).
- (186) M. Sorai and S. Seki, J. Phys. Soc. Jpn., **32,** 382 (1972).
- (187) J. T. S. Andrews, E. F. Westrum, Jr., and N. Bjerrum, *J. Organomet.* Chem., **17,** 293 (1969).
- (188) J. 0. Hill and **R.** J. Irving. *J.* Chem. Soc. A, 1413 (1967). (189) T. P. Melia and R. Merrifield, J. Chem. Soc. A, 2819 (1968); *J.* lnorg. Nucl. Chem., **32,** 1489 (1970).
- (190) R. Fontaine. C. Pommier, and G. Guiochon, *Bull. Soc.* Chim. *Fr.,* 3011 (1972) .
(191) L. A. \
- (191) L. A. Woodward and H. L. Roberts, Trans. Faraday *SOC.,* **52,** 615 (1956); **R.** H. Busey and 0. L. Keller, J. Chem. Phys., **41,** 215 (1964). 192) R. K. Koch and W. E. Anable, Bureau of Mines Report of Investigations
- No. 7063, U.S. Government Printing Office, Washington, D.C., 1968.
- 193) F. L. Oetting and J. D. Navratil, *J. Chem. Eng. Data*, **17,** 230 (1972); B.
Y. Berezin, V. Y. Chekhovskoi, and A. E. Sheindlin, *High Temp.-High Henger*
Pressures, **3**, 287 (1971); J. A. Treverton and J. L. Margrav Mass., Oct 1970, p 489; A. Cezairliyan, M. S. Morse, H. A. Berman,
and C. W. Beckett, *J. Res. Natl. Bur. Stand., Sect. A,* **74,** 65 (1970).
194) G. DeMaria, R. P. Burns, J. Drowart, and M. G. Inghram, *J. Chem.*
- Phys., **32,** 1373 (1960).
- 195) B. A. Staskiewicz, J. R. Tucker, and P. E. Snyder, *J.* Am. Chem. Soc., **77,** 2987 (1955).
- (196) A. D.Mah, J. Phys. *Chem..61,* 1572(1957).
- (197) *S.* Berglund and P. Kierkegaard. Acta Chem. Scand., **23,** 329 (1969).
- (198) R. P. Burns, G. DeMaria, J. Drowart, and R. T. Grimley, *J.* Chem. Phys., **32,** 1363 (1960).
- (199) J. Bousquet and A. Guillon. *Bull. SOC.* Chim. *Fr.,* 2250 (1966); J. Bous-quet, J.-C. David, M. Diot, and A. Guillon. /bid., 2390 (1968); S. Zador
- and C. 8. Alcock, J. Chem. Thermodyn., **2,9** (1970). (200) E. G. King, W. W. Weller, and A. U. Christensen, Bureau of Mines **Re-**port of Investigations No. 5664, U.S. Government Printing Office, Washington, D.C., 1960; L. A. Cosgrove and P. E. Snyder, *J.* Am. Chem. Soc., **75,** 1227 (1953).
- (201) A. D. Kirshenbaum and A. J. Beardell. Thermochim. Acta, **4,** 239 (1972).
- (202) E. R. Plante, Ph.D. Thesis, University of Kansas, 1960. (203) J. Berkowitz, **M.** G. inghram, and W. A. Chupka. J. Chem. Phys., **26,** 842 (1957).
- (204) *E.* K. Kazenas and Y. V. Tsvetkov, *Russ.* J. lnorg. Chem.. **14,** 5 (1969).
-
- (205) R. L. Graham and L. G. Hepler. J. Am. Chem. Soc., **78,** 4846 (1956). (206) P. A. G. O'Hare and H. R. Hoekstra, J. Chem. Thermodyn., *6,* 117 (1974).
- (207) P. A. G. O'Hare and H. R. Hoekstra, J. Chem. Thermodyn., **5,** 851 (1973).
- (208) L. G. Hepler, Can. J. Chem., **47,** 3469 (1969).
- (209) P. A. G. O'Hare, K. J. Jensen, and H. R. Hoekstra, J. Chem. Thermodyn., **6,** 681 (1974).
- (210) W. W. Weiier and E. G. King, Bureau of Mines Report of Investigations No. 6147, US. Government Printing Office, Washington, D.C., 1963.
-
- (211) R. Barany, Bureau of Mines Report of Investigations No. 6143, U.S.
Government Printing Office, Washington, D.C., 1962.
(212) C. N. Muldrow, Jr., and L. G. Hepler, J. Phys. Chem., **62**, 982 (1958).
(213) P. A. G. O'Ha
-
- (215) M. F. Koehler. L. B. Pankratz, and R. Barany. Bureau of Mines Report of lnvestioations No. 5973. US. Government Printinq Office, Washington, D.C., 1962.
- **ko,** Russ. *J.* lnorg. Chem.. **16,** 612 (1973). (216) A. P. Zhidikova, I. L. Khodakovskii. M. A. Urusova. and V. M. Valyash-
- (218) A. Navrotsky and O. J. Kleppa, *Inorg. Chem.*, 6, 2119 (1967); A. Brenner and W. H. Metzger, Jr., *J. Electrochem. Soc.*, 115, 258 (1968).
218a) W. W. Weller and K. K. Kelley, Bureau of Mines Report of Investiga-
- tions No. 6191, U.S. Government Printing Office, Washington, D.C., 1963.
- (219) T. Nelson, C. Moss, and L. G. Hepler, *J.* Phys. Chem., **64,** 376 (1960).
- (220) M. Farber and R. D. Srivastava, Combust. Flame, **20,** 33 (1973).
- (221) D. W. Osborne, H. E. Flotow, and H. R. Hoekstra, *J.* Chem. Tbermo-dyn., **6,** 179 (1974).
- (222) G. Verhaegen, R. Colin, G. Exsteen, and J. Drowart, Trans. Faraday SOC., **61,** 1372 (1965). (223) C. Pupp, R. Yamdagni, and R. F. Porter, J. lnorg. *Nucl.* Chem., **31,**
- 2021 (1969).
- (224) C. N. Muldrow, Jr., and L. G. Hepler, *J. Am. Chem. Soc.*, **78,** 5989
(1956); K. Pan, *J. Chin. Chem. Soc.* (Taipei), **1,** 16 (1954); J. E. Ricci
and W. F. Linke, *J. Am. Chem. Soc.*, **73,** 3601 (1951).
(225) R. Bara
- Government Printing Office, Washington, D.C., 1965.
(226) J. Ziolkowski and P. Courtine, *Ann. Chim. (Paris*), **8,** 303 (1973).
(227) W. W. Weller, Bureau of Mines Report of Investigations No. 6782, U.S.
-
- Government Printing Office, Washington, D.C., 1966.
W. W. Weller and K. K. Kelley, Bureau of Mines Report of Investiga-
tions No. 6357, U.S. Government Printing Office, Washington, D.C.,
-
-
-
-
- 1964.

R. A. Fisher, E. W. Hornung, G. E. Brodale, and W. F. Giauque, J.

R. A. Fisher, E. W. Hornung, G. E. W. Hornung, G. E. Brodale, R. A. Fisher, and W. F. Giauque, *ibid.*, **56**, 5007 (1972); G. E. Brodale, R. A. Fish
-
- L. McKean and M. T. Pope, lnorg. Chem., **13,** 747 (1974); G. A. Tsigdi-nos and C. J. Hallada. *J.* Less-Common Met., **36,** 79 (1974).
- 0. W. Roliins, J. lnorg. *Nucl.* Chem., **33,** 75 (1971). D. W. Osborne, F. Schreiner. J. G. Malm, H. Selig, and L. Rochester, J. Chem. Phys., **44,** 2802 (1966).
- B. Weinstock and G. L. Goodman, Adv. Chem. Phys., **9,** 169 (1965).
- A. P. Brady, 0. E. Myers, and J. D. Clauss, *J.* Phys. Chem., **64,** 588 (1960).
G. H. Cady and G. B. Hargreaves, *J. Chem. Soc.,* 1563 (1961).
- J. L. Settle, H. M. Feder, and W. N. Hubbard, J. Phys. Chem., **65,** 1337 (1961).
-
- .
O. E. Myers and A. P. Brady, *J. Phys. Chem.*, 64, 591 (1960).
R. L. Nuttall, K. L. Churney, and M. V. Kilday, National Bureau of Stan-
dards Report 10904, U.S. Department of Commerce, Washington, D.C., 1972.
- J. Burgess, I. Haigh. and R. D. Peacock, *J.* Chem. SOC., Dalton Trans., 1062 (1974).
-
-
- V. T. Orekov and A. G. Rybakov, *Zh. Fiz. Khim., 47, 1*612 (1973).
R. T. Paine and R. S. McDowell, *Inorg. Chem.,* 1**3,** 2366 (1974).
G. H. Cady and G. B. Hargreaves, J. *Chem. Soc.*, 1568 (1961).
K. F. Zmbov, O. M. Uy,
- (1969). (249) S. A. Shchukarev, G. I. Novikov, I. V. Vasil'kova, A. V. Suvorov, N. V.
- Andreeva. B. N. Sharupin, and A. K. Baev, *Russ.* J. Inorg. Chem., **5,** 802 f 1960) **^I**
- (250) H:Oppermann and G. Stover, Z. Anorg. Chem., **387,** 218 (1972). (251) H. Oppermann, G. Stover, and G. Kunze, Z. Anorg. Chem., **387,** 201
- (1972)
-
- (252) R. L. Graham and L. G. Hepler, *J. Phys. Chem.*, 63, 723 (1959).
(253) S. A. Shchukarev, I. V. Vasil'kova, and B. N. Sharupin, *Vestn. Leningr.*
Univ. (14, No. 4), *Fiz., Khim.,* No. 1, 73 (1959); *Chem. Abstr.,* 5 13856d (1959).
-
- (254) H. Oppermann, Z. Anorg. Chem., **379,** 262 (1970). (255) S. A. Shchukarev, I. V. Vasil'kova, and B. N. Sharupin, Vestn. Leningr. *Univ. (76,* No. *22), Fiz.,* Khim., No. 4, 130 (1961).
-
- (256) N. Hultgren and L. Brewer, *J. Phys. Chem.*, **60,** 947 (1956).
(257) A. Shukurov, T. Nikol'skaya, I. V. Vasil'kova, and S. A. Shchukarev,
Izv. *Akad. Nauk Tadzh. SSR, Otd. Geol.-Khim. Tekh. Nauk* No. 4, 23 (1961): Chem. Abstr.. **57,** 144989 (1962).
-
- (258) H. Oppermann, Z. Anorg. Chem., 395, 249 (1973).
(259) S. A. Shchukarev, I. V. Vasil'kova, and N. D. Zaitseva, Vestn. Leningr.
Univ., (16, No. 22), Fiz., Khim., No. 4, 127 (1961); Chem. Abstr., 56, 95 10g (1962).
- (260) I. V. Vasil'kova, N. D. Zaitseva, and Y. S. Svalov. Vestn. Leningr. *Univ. (76, No. 76), Fiz.,* Khim., No. 3. 140 (1961): Chem. Abstr.. **56,** 4168e (1962).
- (261) H. Oppermann. G. Kunze, and G. Stover, Z. Anorg. Chem.. **387,** 339 (1972).
- (262) D. S. Barnes, G. Pilcher, D. A. Pittam, H. A. Skinner, D. Todd, and Y.
Virmani, *J. Less-Common Met.*, 36, 177 (1974).
(263) Y. Virmani, D. S. Barnes, and H. A. Skinner, *J. Chem. Soc., Dalton*)
- *Trans.,* 399 (1974).
- (264) T. L. Allen and D. M. Yost, J. Chem. Phys., 22, 855 (1954).
(265) H. Oppermann, *Z. Anorg. Chem.*, 383, 285 (1971).
(266) N. G. Barancheeva and L. A. Zharkova, Russ. J. Inorg. Chem., 40, 736
-
- (1966).
- (266a) Y. Gerasimov. Dokl. Mezhdunar. Kongr. Teor. *Prikl.* Khim., **13,** 77

(1953); Chem. Abstr., **48,** 4941b (1954).

- 1371 (1965); Chem. Abstr., **44, 44, and T. N. Rezukhina,** *Elektrokhimiya***,
1, 1371 (1965);** *Chem. Abstr.***, 64, 16722g (1966).
(1957), L. A. Zhorkove ord N. G. Berencheeve,** *Pius, Chem.* **38, 401.**
- (267) L. A. Zharkova and N. G. Barancheeva, *Russ. J.* Phys. Chem., **38,** 401 (1964).
- (268) E. F. Westrum, Jr., and J. J. McBride, Phys. Rev., **98,** 270 (1955).
- (269) N. Parravano and G. Malquori, Atti Accad. Naz. Lincei, *GI. Sci. Fis., Mat., Nat.,* Rend., 7, 19. 109 (1928): Chem. Abstr., **22,** 2091 (1928); I. A. Makolkin, *Russ. J.* Phys. Chem., **14,** 110 (1940); Chem. Abstr., **35,** 95g3 (1941).
- (270) P. A. G. O'Hare, E. Benn, F. Y. Cheng, and G. Kuzmycz. *J.* Chem. Thermodyn., **2,** 797 (1970).
	-
	- (271) W. Biltz and A. Kocher, *Z. Anorg. Chem.,* **248,** 172 (1941).
(272) A. Muller, T. P. Prasad, and R. Menge, *Z. Anorg. Chem.,* **391,** 107
(1972); T. P. Prasad, E. Diemann, and A. Muller, *J. Inorg. Nucl. Chem.*, **35,** 1895 (1973).
	- A. D. Mah. Bureau of Mines Report of Investigations No. 6337, U.S.
	- Government Printing Office, Washington, D.C., 1963.
L. B. Pankratz, W. W. Weller, and E. G. King, Bureau of Mines Report fuvestigations No. 6861, U.S. Government Printing Office, Washing-
for Investigations No. 6861, U.S.
	-
	-
- R. J. Peavler and **A.** W. Searcy. *J.* Am. Chem. SOC., **78,** 2076 (1956). H. K. El-Shamy and A. M. El-Aggan, J. *Am.* Chem. SOC., **75,** 1187
-
-
- (1953).
G. P. Haight, Jr., *J. Inorg. Nucl. Chem.*, **24,** 663 (1962).
M. Ardon and A. Pernick, *Inorg. Chem.*, **12,** 2484 (1973).
H. K. Saha and M. C. Halder, *J. Inorg. Nucl. Chem.*, **33,** 705 (1971); H.
K. Saha and A. K.
- I. N. Marov. Y. N. Dubrov. A. N. Ermakov, and G. N. Martynova, *Russ.* J. *Inorg.* Chem., **14,** 224 (1969); I. N. Marov, Y. N. Dubrov, V. K. Belayeva. and A. N. Ermakov, ibid., **13,** 1107 (1968).
- J. Burgess, I. Haigh, R. D. Peacock, and P. Taylor, J. Chem. SOC., *Dal*ton *Trans.,* 1064 (1974).
- R. Gut, E. Schmid, and J. Serrallach. Helv. Chim. Acta, **54,** 593 $(1971).$
- A. I. Efimov and L. P. Belorukova, *Russ. J.* lnorg. Chem., **12,** 792
-
- (1967). W. U. Malik and *S.* I. Ali, Talanta, **6,** 737 (1961). I. M. Kolthoff and W. J. Tomsicek, *J.* Phys. Chem., **40,** 247 (1936); W. U. Malik and S. I. Ali, lndian J. Chem., **I,** 374 (1963).
- M. Ardon and A. Pernick, lnorg. Chem., **13,** 2275 (1974). Y. Sasaki and A. G. Sykes, J. Chem. *SOC.,* Chem. *Commun..* 767
-
- (1973).
A. R. Bowen and H. Taube, *Inorg. Chem.*, **13,** 2245 (1974); J. A. Filip-
po, Jr., H. J. Sniadoch, and R. L. Grayson, *ibid.*, **13,** 2121 (1974).
R. R. Monchamp and F. A. Cotton, *J. Chem. Soc.,* 1438 (1960).
- D. N. Astrov, E. S. Itsekevich, and K. A. Sharifov*, Zh. Fiz. Khim.,* **29,**
424 (1955); *Chem. Abstr.*, **50,** 1358*8*f (1956).
A. D. Westland and V. Uzelac, *Can. J. Chem.*, 48, 2871 (1970).
E. R. Plante and A. B. Sessoms,
-
-
- 237 (1973). L. Leibowitz, M. G. Chasanov, and L. W. Mishler, *Trans.* Metall. SOC. AlME, **245,** 981 (1969). A. **D.** Mah, *J.* Am. Chem. *SOC.,* **81,** 1582 (1959).
-
-
- T. V. Charlu and 0. J. Kleppa. *J.* Chem. Thermodyn., **5,** 325 (1973). F. E. Rizzo. L. R. Bidwell, and D. F. Frank, Trans. *Metall.* SOC. AM€, **239,** 1901 (1967).
- W. A. Chupka, J. Berkowitz, and C. F. Giese. J. Chem. Phys., **30,** 827 (1 959).
- *G.* Huff, E. Squitieri. and P. E. Snyder, J. Am. Chem. SOC., **70,** 3380 (1948).
- (300) R. J. Ackermann, R. J. Thorn, C. Alexander, and M. Tetenbaum, J. Phys. Chem., **64,** 350 (1960). R. J. Ackermann and E. G. Rauh, J. Phys. Chem., **67,** 2596 (1963).
-
-
- J. H. Norman and H. G. Staley, *J.* Chem. Phys., **43,** 3804 (1965). J. Bousquet and G. Perachon, C. *R.* Acad. *Sci.,* **258,** 934 (1964).
- H. C. KO, T. Matsui, and L. G. Hepler. Thermochim. Acta, **10,** 211 (1974); see also ref 322.
- V. I. Spitsyn and N. N. Patsukova, *Russ.* J. *lnorg.* Chem., **IO,** 1304
-
- (1965).
G. R. Belton and R. L. McCarron, *J. Phys. Chem.*, **68**, 1852 (1964).
O. Glemser and H. Ackermann, *Z. Anorg. Chem.*, **325**, 281 (1963); O. Glemser and R. J. Haeseler, *ibid.*, **316**, 168 (1962).
G. Meyer, J. F. Oo
- J. M. Sherfey and A. Brenner, *J.* Electrochem. Soc., **105,** 665 (1958).
	-
- D. L. Kepert. Prog. lnorg. Chem., 4, 199 (1962). G. Goldstein. C.-M. Wolff, and J.-P. Schwing. *Bull. SOC.* Chim. *Fr.,* 1201 (1971).
- R. Arnek and Y. Sasaki, Acta Chem. Scand., Ser. A, **28,** 20 (1974).
-

(1973).

- R. Arnek. Acta Chem. Scand., **23,** 1986 (1969). J. C. Dewan and D. L. Kepert, *J.* Chem. *Soc..* Dalton *Trans.,* 224 (1973). V. A. Nazarenko and E. N. Poiuektova, *Russ. J.* Inorg. Chem., **14,** 105
- (1969). C. M. Flynn. Jr., M. T. Pope, and S. O'Donnell, lnorg. Chem., **13,** 831
- (1974). E. S. Ganelina and L. A. Bubnova, Zh. Neorg. Khim., **19,** 159 (1974);

Chem. Abstr., 80, 74814s (1974).
V. I. Spitsyn, G. V. Kosmodemyanskaya, and M. M. Sadykova, *Zh.*
Neorg. Khim., 17, 3331 (1972); Chem. Abstr., 78, 48884d (1973).
E. S. Ganelina, V. P. Kuzmicheva, L. A. Bubnova, and M. B. K skaya, Zh. Neorg. Khim., **18,** 1893 (1973); Chem. Abstr., **?9,** 142388n

-
- (320) T. J. R. Weakley, *J. Chem. Soc., Dalton Trans.,* 341 (1973).
(321) E. G. King and W. W. Weller, Bureau of Mines Report of Investigations
No. 5791, U.S. Government Printing Office, Washington, D.C., 1961.
- **(322) R.** L. Graham and L. G. Hepler, *J.* Am. Cbem. SOC., **80, 3538 (1958). (323)** T. N. Rezukhina and **V. A.** Levitskii, *Russ. J.* Pbys. Cbem., **37, 1277 (1963).**
- (324) A. Navrotsky and O. J. Kleppa, *Inorg. Chem.*, **8,** 756 (1969).
- **(325)** V. **A.** Levitskii and T. N. Rezukhina, **2%.** *Fiz. Kbim..* **37, 1135 (1963);** Cbem. Abstr., **59, 7028h (1963).**
- **(326)** T. N. Rezukhina, Y. I. Gerasimov, and V. **A.** Morozova, *Zb. Fiz. Kbim.,* **25, 93 (1951);** Cbem. Abstr., **45,** 5005b **(1951).**
- **(327)** R. **A.** Yakovleva and T. N. Rezukhina. *Russ. J.* Pbys. Cbem.. **34, 390 (1960).**
- **(328)** *2.* V. Proshina and T. N. Rezukhina, *Russ. J.* lnorg. Cbem., **5, 488 (1960).** ^I **(329)** W. G. Lyon and E. F. Westrum, Jr., *J.* Cbem. Tbermodyn., **6, 781**
- **(1974).**
- **(330)** W. G. Lyon and E. F. Westrum, Jr.. *J.* Cbem. Tbermodyn., **8, 763 (1974). (331)** L. **A.** Zharkova and Y. I. Gerasirnov, *Russ. J.* Phys. Cbem.. **35. 1131**
- **(1961).**
- **A. A.** Bulatova, V. B. Aleskovskii, and **M.** I. Bulatov, Zb. Prikl. *Kbim.* (Leningrad), **46, 2761 (1973);** Cbem. Abstr., **80,** 52885p **(1974).**
- **(333) (334)** K. Pan, *J. Chin. Chem. Soc.* (*Taipei*), 1, 26 (1954).
V. N. Chentsov, Y. Y. Skolis, V. A. Levitskii, and Y. Khekimov, *Izv*. Akad. Nauk *SSSR,* Neorg. Mater., **9, 1591 (1973);** Cbem. Abstr., **80, 7743e (1974);** I. **A.** Vasileva, *S.* N. Mudretsova, and E. I. Malienko, *Russ. J.* Pbys. Chem., **47, 1383 (1973).**
- **(335)** P. A. G. O'Hare and W. N. Hubbard, *J.* Pbys. Cbem., **70, 3353 (1966).**
- **(336)** J. Schroeder and F. J. Sieben, Chem. Ber., **103, 76 (1970);** V. Y. Leonidov, V. S. Pervov, L. I. Klyuev, 0. **M.** Gaisinskaya, V. **A.** Medve-dev. and N. *S.* Nikolaev. *J.* Gen. Cbem. *USSR* (Engl. Transl.), **205, 574 (1972).**
- **(337) E.** J. Barber and G. H. Cady. *J.* Pbys. Cbem., **60, 505 (1956).**
- **(338)** J. Burgess, C. J W. Fraser, R. D. Peacock, P. Taylor, A. Majid, and J. **M.** Winfield, *J.* Fluorine Cbem., **3, 55 (1973/74).**
- **(339)** J. Schroeder and F. J. Grewe, Cbem. Ber., **103, 1536 (1970).**
- **(340)** G Dittmer. A. Klopfer, D. S. **Ross,** and J. Schroeder. *J.* Cbem. SOC., Chem. Commun., **846 (1973).**
-
- H. Oppermann, 2. Anorg. Cbem., **383, l(1971).** P. Enghag and Staffansson, Acta Cbem. Scand., **26, 1067 (1972).** W. Brockner, H. Hovdan. and *S.* J. Cyvin, *Z.* Naturforsch., A, **29, 620 (1974).**
- H. Oppermann, G. Stover, and G. Kunze, 2. Anorg. Chem., **387, 317 (1972).**
- *S.* A. Shchukarev and G. A. Kokovin, *Russ. J.* lnorg. Chem., **9, 715 (1964).**
- *S.* A. Shchukarev. G. i. Novikov, and G. A. Kokovin, Zh. Neorg. *Kbim.,* **4, 2184 (1959).**
- (347) S. A. Shchukarev and G. A. Kokovin, Russ. J. Inorg. Chem., 9, 849 **(1964).**
- (348) H. Oppermann and G. Stover, Z. Anorg. Chem., 383, 14 (1971).
- *S.* K. Gupta, *J.* Phys. Cbem., **75, 112 (1971).**
- G. **A.** Kokovin, *Russ. J.* inorg. Cbem. (Engl. Transl.). **12, 7 (1967).** (351) H. Oppermann, G. Stover, and G. Kunze, Z. Anorg. Chem., 387, 329 **(1972).**
- **S.** K. Gupta, lnorg. Chem., **12, 1622 (1973).**
-
- S. K. Gupta, *J. Phys. Chem.,* **73,** 4086 (1969).
J. Burgess, I. Haigh, and R. D. Peacock, *Chem. Commun.,* 977 (1971).
N. D. Zaitseva, *Russ. J. Inorg. Chem.*, **10,** 1239 (1963).
-
- G. N. Kudryashova. L. **A.** Obozova, and D. V. Korolkov, *Russ. J.* lnorg.
- *Chem.*, **15,** 1697 (1970).
C. Cerny, M. Habes, M. Zelena, and E. Erdös, *Collect. Czech. Chem.*
Commun., **24,** 3836 (1959); *Chem. Abstr.,* **54,** 10465f (1960).
L. D. McGraw, H. Seltz, and P. E. Snyder, J. A*m. Chem. Soc.*
- **(1 947).**
- (359) H. Baadsgaard and W. D. Treadwell, Helv. Chim. Acta, 38, 1669 **(1955).**
- C. H. Brubaker, Jr., *J,* Am. Chem. SOC., **78, 5762 (1956);** K. **0.** Groves, J. L. Dye, and C. H. Brubaker, Jr., ibid., **82, 4445 (1960).**
- (361) A. A. Opalovskii, V. E. Fedorov, E. U. Lobkov, and B. I. Tsikanovskii,
Russ. J. Phys. Chem., **45,** 1064 (1971).
(362) N. A. Korotchenko, K. K. Fomicheva, G. A. Bogdanov, and R. I. Ter-
-
- eshkina, *Russ. J.* lnorg. Cbem., **18, 646 (1973). (363) M.** P. Morozova and G. P. Ovcharova, Russ. *J.* Pbys. Cbem., **43, 966 (1969).**
- **(364)** P. G. Dickens and D. J. Neild, *J.* Chem. SOC., Dalton Trans., **1074**
- **(1973). (365)** P. G. Dickens, J. H. Moore, and D. J. Neild, *J.* Solid State Cbem., **7, 241 (1973);** Cbem. Abstr., **79, 140291b (1973);** P. G. Dickens and D. J. Neild, *J.* Solid State Cbem., **7, 474 (1973);** Chem. Abstr., **79, 108788h (1973).**
- **(366)** Y.-W. Kim and G. R. Belton, Mefall. Trans., **5, 1811 (1974).**
- **(367)** N. Sano and G. R. Belton, Metall. Trans., **5, 2151 (1974). (368) A.** L. Jones, H. G. Linge, and i. R. Wilson, Aust. *J.* Chem., **24, 2005 (1971).**
- **(369)** P. **A.** G. O'Hare, **M.** Ader, W. N. Hubbard, G. K. Johnson, and J. L. Settle, *Thermodyn. Nucl. Mater., Proc. Symp., 1974*, 2, 439–453 (1974);
P. A. G. O'Hare and J. Boerio, submitted for publication. P. A. G.
O'Hare, J. Boerio, and K. J. Jensen, submitted for publication.
- **(370)** L. Denielou, J.-P. Petitet, and C. Tequi, Tbermocbim. Acta, **12, 209 (1975).**
- (371) S. B. Tsyrenova, Yu. L. Suponitskii, and M. Kh. Karapet'yants, *Russ. J.*
Phys. Chem., 48, 919 (1974).
(372) I. Dellien, K. G. McCurdy, and L. G. Hepler, *J. Chem. Thermodyn.,* in
- press.
- **(373)** R. Gee and R. **A.** J. Shelton, *J.* Less-Common Met., **41, 347 (1975). (374)** I. **A.** Ratykovskii, T. A. Pribytkova, and N. V. Galitskii, High Temp. (Engl. Transl.), **12, 638 (1974).**
-
- **M.** Aits and H. Schafer, 2. Anorg. Ailg. Cbem., **408, 37 (1974).** I. Dellien and L. G. Hepler, Can. *J.* Chem., in press.
- B. Baranowski and K. Bojarski, Rocz. Chem., **46, 525 (1972);** ibid., **46, 1403 (1972);** B. Baranowski and **M.** Tkacz, ibid., **48, 713 (1974).** R. **A.** Vecher, G. *S.* Petrov, T. B. Zil'berman, T. **A.** Karpova. and **A. A.**
- Vecher, *Russ. J.* Pbys. Chem. (Engl. Trans,.), **48, 927 (1974).**
- E. Rosen, Chem. Scr., **8, 43 (1975).**
- R. Benz, J. F. Elliott, and J. Chipman, Metall. Trans., **5, 2235 (1974).**
- D. **A.** Pittam, G. Pilcher, D. *S.* Barnes, H. A. Skinner, and D. Todd, *J.* Less-Common Met.. **42, 217 (1975).**
- G. Pilcher. **M.** J. Ware, and D. **A.** Pittam, *J.* Less-Common Met., **42,**
- * **223 (1975). (383)** N. A. A. Mumallah and W. J. Popiel, Anal. Chem., **46, 2055 (1974),** and papers cited by these authors; P. Cerutti, E. Shaskin, K. G. McCur-
- dy, and L. G. Hepler, to be submitted for publication.
(384) P. A. G. O'Hare and H. R. Hoekstra, J. Chem. Th **(384)** P. **A.** G. O'Hare and H. R. Hoekstra, *J.* Cbem. Tbermodyn., **7, 279 (1975).**
- **(385)** D. R. Fredrickson and **M.** G. Chasanov, "Analytical Calorimetry", Vol. **3,** R. S. Porter and J. F. Johnson, Ed., Plenum Publishing Corp., New
- York, N.Y., **1974,** p **723. (386)** W. G. Lyon and E. F. Westrum, Jr.. *J.* Cbem. Thermodyn., **7, 741 (1975).**
-
- **(387)** I. Johnson, *J.* Phys. Chem., **79, 722 (1975). (388)** H. L. Kiwia and E. F. Westrum, Jr., submitted for publication.
- **(389) A.** Kigoshi, Thermochim. Acta, **12, 179 (1975).**
- **(390)** G. F. McKnight and G. P. Haight, Jr., lnorg. Chem., **12, 1934 (1973).**
-
- **(391)** T. G. Chart, Met. Sci., **8, 344 (1974). (392)** V. N. Chentsov, V. A. Levitskii, V. K. Trunov, and Ya. I. Gerasimov, **(393)** T. N. Rezukhina and T. **A.** Kashina, *Russ. J,* Pbys. Cbem., **48, 1702** Proc. Acad. Sci. *USSR,* **217, 751 (1974).**
- **(1974).**
- (394) V. A. Levitskii and Y. Y. Scolis, *J. Chem. Thermodyn.*, **6**, 1181 (1974).
(395) V. A. Levitskii, V. N. Chentsov, Yu. Ya. Skolis, and Yu. G. Golovanova,
Russ. J. Phys. Chem., 4**6**, 151 (1972).
- **(396)** A. V. Gusarov, V. *S.* Pervov, I. S. Gotkis, L. I. Klyuev, and V. D. But-
- **(397)** A. J. Kale and K. Sathianandan. Curr. Sci., **39,** 58 **(1970).** skii. Proc. Acad. Sci. *USSR,* **216, 445 (1974).**
- **(398) M.** *S.* Whittingham, *J.* Electrocbem. SOC., **122, 713 (1975).**
-
- **(399)** B. E. Taylor and P. F. Welier, *J.* Solid State Cbem., **1, 210 (1970). (400)** D. **S.** Barnes, G. Pilcher, D. A. Pittam, H. **A.** Skinner, and D. Todd, *J.* Less-Common Met., **28, 53 (1974).**